hrcak mascot   Srce   HID

Food Technology and Biotechnology, Vol.55 No.2 Lipanj 2017.

Prethodno priopćenje
https://doi.org/10.17113/ftb.55.02.17.5009

Production of γ-Decalactone by Yeast Strains under Different Conditions

Dayana Pereira de Andrade ; Department of Biology, Federal University of Lavras, Campus Universitario,
Beatriz Ferreira Carvalho ; Department of Animal Science, Federal University of Lavras, Campus Universitario, BR-37200-000, Lavras, MG, Brazil
Rosane Freitas Schwan ; Department of Biology, Federal University of Lavras, Campus Universitario,
Disney Ribeiro Dias   ORCID icon orcid.org/0000-0002-1010-1484 ; Department of Food Science, Federal University of Lavras, Campus Universitario, BR-37200-000, Lavras, MG, Brazil

Puni tekst: engleski, pdf (355 KB) str. 225-230 preuzimanja: 60* citiraj
APA
de Andrade, D.P., Ferreira Carvalho, B., Freitas Schwan, R., Ribeiro Dias, D. (2017). Production of γ-Decalactone by Yeast Strains under Different Conditions. Food Technology and Biotechnology, 55(2). doi:10.17113/ftb.55.02.17.5009

Rad u XML formatu

Sažetak
γ-Decalactone is a flavour compound that when obtained by biotechnological production using microorganisms is classified as natural. The aim of this study is to evaluate various conditions for γ-decalactone production by tropical yeast strains Yarrowia lipolytica CCMA 0242 and Lindnera saturnus CCMA 0243. The growth of and γ-decalactone production by Y. lipolytica CCMA 0242 were higher in castor oil than in glycerol. γ-Decalactone production in single batch or fed-batch fermentation did not differ significantly. The γ-decalactone production by L. saturnus CCMA 0243 was better at initial pH=5, while the production by Y. lipolytica CCMA 0242 was better at initial pH=6. The yeast L. saturnus CCMA 0243 produced more γ-decalactone than Y. lipolytica CCMA 0242 under the same fermentation conditions. The crude glycerol was not an alternative substrate for γ-decalactone production by Y. lipolytica CCMA 0242. Castor oil at volume fraction of 30 % showed better results as a substrate. The strain L. saturnus CCMA 0243 showed better results of γ-decalactone production. This yeast species can be considered an alternative producer of γ-decalactone in biotechnological processes.

Ključne riječi
castor oil; crude glycerol; Lindnera saturnus; microbial γ-decalactone; Yarrowia lipolytica

Hrčak ID: 183069

URI
https://hrcak.srce.hr/183069

Reference

1 

Maume KA, Cheetham PSJ. The production of γ-decalactone by fermentation of castor oil. Biocatal Biotransform. 1991;5:79–97. DOI: http://dx.doi.org/10.3109/10242429109014857

2 

Gomes N, Teixeira JA, Belo I. The use of methyl ricinoleate in lactone production by Yarrowia lipolytica: aspects of bioprocess operation that influence the overall performance. Biocatal Biotransform. 2010;28:227–34. DOI: http://dx.doi.org/10.3109/10242422.2010.493208

3 

Moradi H, Asadollahi MA, Nahvi I. Improved γ-decalactone production from castor oil by fed-batch cultivation of Yarrowia lipolytica. Biocatal Agric Biotechnol. 2013;2:64–8. DOI: http://dx.doi.org/10.1016/j.bcab.2012.11.001

4 

da Silva GP, Mack M, Contiero J. Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv. 2009;27:30–9. DOI: http://dx.doi.org/10.1016/j.biotechadv.2008.07.006 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/18775486

5 

Souza KST, Schwan RF, Dias DR. Lipid and citric acid production by wild yeasts grown in glycerol. J Microbiol Biotechnol. 2014;24:497–506. DOI: http://dx.doi.org/10.4014/jmb.1310.10084 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24473455

6 

Pagot Y, Le Clainche A, Nicaud JM, Waché Y, Belin JM. Peroxisomal β-oxidation activities and γ-decalactone production by the yeast Yarrowia lipolytica. Appl Microbiol Biotechnol. 1998;49:295–300. DOI: http://dx.doi.org/10.1007/s002530051172 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/9581293

7 

Waché Y, Aguedo M, Choquet A, Gatfield IL, Nicaud JM, Belin JM. Role of β-oxidation enzymes in γ-decalactone production by the yeast Yarrowia lipolytica. Appl Environ Microbiol. 2001;67:5700–4. DOI: http://dx.doi.org/10.1128/AEM.67.12.5700-5704.2001 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/11722925

8 

Lee SL, Cheng HY, Chen WC, Chou CC. Effect of physical factors on the production of γ-decalactone by immobilized cells of Sporidiobolus salmonicolor. Process Biochem. 1999;34:845–50. https://doi.org/S0032-9592(99)00010-2 DOI: http://dx.doi.org/10.1016/S0032-9592(99)00010-2

9 

Gomes N, Teixeira JA, Belo I. Empirical modelling as an experimental approach to optimize lactone production. Catal Sci Technol. 2011;1:86–92. DOI: http://dx.doi.org/10.1039/c0cy00017e

10 

Waché Y, Aguedo M, Nicaud JM, Belin JM. Catabolism of hydroxyacids and biotechnological production of lactones by Yarrowia lipolytica. Appl Microbiol Biotechnol. 2003;61:393–404. DOI: http://dx.doi.org/10.1007/s00253-002-1207-1 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/12764554

11 

Soares GPA, Souza KST, Vilela LF, Schwan RF, Dias DR. γ-Decalactone production by Yarrowia lipolytica and Lindnera saturnus in crude glycerol. Prep Biochem Biotechnol. 2017;47: DOI: http://dx.doi.org/10.1080/10826068.2017.1286601 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/28151056

12 

Miguel MGCP, Cardoso PG, Magalhães KT, Schwan RF. Profile of microbial communities present in tibico (sugary kefir) grains from different Brazilian states. World J Microbiol Biotechnol. 2011;27:1875–84. DOI: http://dx.doi.org/10.1007/s11274-010-0646-6

13 

Carvalho FP, de Souza AC, Magalhães-Guedes KT, Dias DR, Silva CF, Schwan RF. Yeasts diversity in Brazilian Cerrado soils: study of the enzymatic activities. Afr J Microbiol Res. 2013;7:4176–90. DOI: http://dx.doi.org/10.5897/AJMR2013.5752

14 

Gomes N, Waché Y, Teixeira JA, Belo I. Oil-in-water emulsions characterization by laser granulometry and impact on γ-decalactone production in Yarrowia lipolytica. Biotechnol Lett. 2011;33:1601–6. DOI: http://dx.doi.org/10.1007/s10529-011-0593-9 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21431848

15 

Gomes N, Teixeira JA, Belo I. Fed-batch versus batch cultures of Yarrowia lipolytica for γ-decalactone production from methyl ricinoleate. Biotechnol Lett. 2012;34:649–54. DOI: http://dx.doi.org/10.1007/s10529-011-0824-0 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22160330

16 

Braga A, Belo I. Production of γ-decalactone by Yarrowia lipolytica: insights into experimental conditions and operating mode optimization. J Chem Technol Biotechnol. 2014;90:559–65. DOI: http://dx.doi.org/10.1002/jctb.4349

17 

Ferreira DF. Sisvar: a computer statistical analysis system. Cienc Agrotec. 2011;35:1039–42. DOI: http://dx.doi.org/10.1590/S1413-70542011000600001

18 

Ooi TL, Yong KC, Hazimah AH, Dzulkefly K, Wan Yunus WMZ. Glycerol residue: a rich source of glycerol and medium chain fatty acids. J Oleo Sci. 2004;53:29–33. DOI: http://dx.doi.org/10.5650/jos.53.29

19 

Lee SL, Cheng HY, Chen WC, Chou CC. Production of γ-decalactone from ricinoleic acid by immobilized cells of Sporidiobolus salmonicolor. Process Biochem. 1998;33:453–9. DOI: http://dx.doi.org/10.1016/S0032-9592(98)00013-2

20 

Gomes N, Aguedo M, Teixeira J, Belo I. Oxygen mass transfer in a biphasic medium: influence on the conversion of methyl ricinoleate into γ-decalactone by the yeast Yarrowia lipolytica. Biochem Eng J. 2007;35:380–6. DOI: http://dx.doi.org/10.1016/j.bej.2007.02.002

21 

Braga A, Mesquita DP, Amaral AL, Ferreira EC, Belo I. Aroma production by Yarrowia lipolytica in airlift and stirred tank bioreactors: differences in yeast metabolism and morphology. Biochem Eng J. 2015;93:55–62. DOI: http://dx.doi.org/10.1016/j.bej.2014.09.006

22 

Bakker BM, Overkamp KM, van Maris AJA, Kötter P, Luhik MAH, van Dijken JP, et al. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev. 2001;25:15–37. DOI: http://dx.doi.org/10.1111/j.1574-6976.2001.tb00570.x PubMed: http://www.ncbi.nlm.nih.gov/pubmed/11152939

23 

Aguedo M, Gomes N, Garcia EE, Waché Y, Mota M, Teixeira JA, et al. γ-Decalactone production by Yarrowia lipolytica under increased O2 transfer rates. Biotechnol Lett. 2005;27:1617–21. DOI: http://dx.doi.org/10.1007/s10529-005-2517-z PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16245183

[hrvatski]

Posjeta: 92 *