hrcak mascot   Srce   HID

Rad Hrvatske akademije znanosti i umjetnosti : Matematičke znanosti, No.532=21 Rujan 2017.

Izvorni znanstveni članak
https://doi.org/10.21857/m8vqrt0z59

A new measure of instability and topological entropy of area-preserving twist diffeomorphisms

Siniša Slijepčević   ORCID icon orcid.org/0000-0001-5600-0171 ; Department of Mathematics, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia

Puni tekst: engleski, pdf (263 KB) str. 117-141 preuzimanja: 103* citiraj
APA 6th Edition
Slijepčević, S. (2017). A new measure of instability and topological entropy of area-preserving twist diffeomorphisms. Rad Hrvatske akademije znanosti i umjetnosti, (532=21), 117-141. https://doi.org/10.21857/m8vqrt0z59
MLA 8th Edition
Slijepčević, Siniša. "A new measure of instability and topological entropy of area-preserving twist diffeomorphisms." Rad Hrvatske akademije znanosti i umjetnosti, vol. , br. 532=21, 2017, str. 117-141. https://doi.org/10.21857/m8vqrt0z59. Citirano 19.11.2018.
Chicago 17th Edition
Slijepčević, Siniša. "A new measure of instability and topological entropy of area-preserving twist diffeomorphisms." Rad Hrvatske akademije znanosti i umjetnosti , br. 532=21 (2017): 117-141. https://doi.org/10.21857/m8vqrt0z59
Harvard
Slijepčević, S. (2017). 'A new measure of instability and topological entropy of area-preserving twist diffeomorphisms', Rad Hrvatske akademije znanosti i umjetnosti, (532=21), str. 117-141. doi: https://doi.org/10.21857/m8vqrt0z59
Vancouver
Slijepčević S. A new measure of instability and topological entropy of area-preserving twist diffeomorphisms. Rad Hrvatske akademije znanosti i umjetnosti [Internet]. 2017 [pristupljeno 19.11.2018.];(532=21):117-141. doi: https://doi.org/10.21857/m8vqrt0z59
IEEE
S. Slijepčević, "A new measure of instability and topological entropy of area-preserving twist diffeomorphisms", Rad Hrvatske akademije znanosti i umjetnosti, vol., br. 532=21, str. 117-141, 2017. [Online]. doi: https://doi.org/10.21857/m8vqrt0z59

Sažetak
We introduce a new measure of instability of area-preserving twist diffeomorphisms, which generalizes the notions of angle of splitting of separatrices, and flux through a gap of a Cantori. As an example of application, we establish a sharp > 0 lower bound on the topological entropy in a neighbourhood of a hyperbolic, unique action-minimizing fixed point, assuming only no topological obstruction to diffusion, i.e. no homotopically non-trivial invariant circle consisting of orbits with the rotation number 0. The proof is based on a new method of precise construction of positive entropy invariant measures, applicable to more general Lagrangian systems, also in higher degrees of freedom.

Ključne riječi
Twist maps; topological entropy; metric entropy; separatrix splitting; variational techniques

Hrčak ID: 186434

URI
https://hrcak.srce.hr/186434

Posjeta: 141 *