hrcak mascot   Srce   HID

Izvorni znanstveni članak
https://doi.org/10.3336/gm.42.2.06

Orthogonality, saturation and shape

Luciano Stramaccia ; Dipartimento di Matematica e Informatica, Università di Perugia, via Pascoli, 06123 Perugia, Italia

Puni tekst: engleski, pdf (129 KB) str. 309-318 preuzimanja: 301* citiraj
APA 6th Edition
Stramaccia, L. (2007). Orthogonality, saturation and shape. Glasnik matematički, 42 (2), 309-318. https://doi.org/10.3336/gm.42.2.06
MLA 8th Edition
Stramaccia, Luciano. "Orthogonality, saturation and shape." Glasnik matematički, vol. 42, br. 2, 2007, str. 309-318. https://doi.org/10.3336/gm.42.2.06. Citirano 17.10.2021.
Chicago 17th Edition
Stramaccia, Luciano. "Orthogonality, saturation and shape." Glasnik matematički 42, br. 2 (2007): 309-318. https://doi.org/10.3336/gm.42.2.06
Harvard
Stramaccia, L. (2007). 'Orthogonality, saturation and shape', Glasnik matematički, 42(2), str. 309-318. https://doi.org/10.3336/gm.42.2.06
Vancouver
Stramaccia L. Orthogonality, saturation and shape. Glasnik matematički [Internet]. 2007 [pristupljeno 17.10.2021.];42(2):309-318. https://doi.org/10.3336/gm.42.2.06
IEEE
L. Stramaccia, "Orthogonality, saturation and shape", Glasnik matematički, vol.42, br. 2, str. 309-318, 2007. [Online]. https://doi.org/10.3336/gm.42.2.06

Sažetak
The class of shape equivalences for a pair (C, K) of categories is the orthogonal of K, that is Σ = K . Then Σ is internally saturated (Σ = Σ ). On the other hand, every internally saturated class of morphisms Σ Mor(C), is the class of shape equivalences for some pair (C, K). Moreover, every class of shape equivalences Σ enjoys a calculus of left fractions and such a fact allows one to use techniques from categories of fractions to obtain conditions for Σ to be reflective or proreflective in C.

Ključne riječi
Orthogonality; internal saturation; calculus of fractions; shape; shape equivalences

Hrčak ID: 17943

URI
https://hrcak.srce.hr/17943

Posjeta: 544 *