hrcak mascot   Srce   HID

Izvorni znanstveni članak

Note on Acyclic Structures and their Self-Returning Walks

Jan V. Knop ; Computer Centre, The University Dusseldorf, 4000 Dusseldorf, Federal Republic of Germany
Wolfgang R. Muller ; Computer Centre, The University Dusseldorf, 4000 Dusseldorf, Federal Republic of Germany
Klaus Szymanski ; Computer Centre, The University Dusseldorf, 4000 Dusseldorf, Federal Republic of Germany
Milan Randić ; Department of Mathematics and Computer Science, Drake University, Des Moines, Iowa, U.S.A.
Nenad Trinajstić ; The Rugjer Boskovic Institute, P.O.B. 1016, 41001 Zagreb, Croatia, Yugoslavia

Puni tekst: engleski, pdf (2 MB) str. 405-409 preuzimanja: 94* citiraj
APA 6th Edition
Knop, J.V., Muller, W.R., Szymanski, K., Randić, M. i Trinajstić, N. (1983). Note on Acyclic Structures and their Self-Returning Walks. Croatica Chemica Acta, 56 (3), 405-409. Preuzeto s https://hrcak.srce.hr/194210
MLA 8th Edition
Knop, Jan V., et al. "Note on Acyclic Structures and their Self-Returning Walks." Croatica Chemica Acta, vol. 56, br. 3, 1983, str. 405-409. https://hrcak.srce.hr/194210. Citirano 25.02.2021.
Chicago 17th Edition
Knop, Jan V., Wolfgang R. Muller, Klaus Szymanski, Milan Randić i Nenad Trinajstić. "Note on Acyclic Structures and their Self-Returning Walks." Croatica Chemica Acta 56, br. 3 (1983): 405-409. https://hrcak.srce.hr/194210
Harvard
Knop, J.V., et al. (1983). 'Note on Acyclic Structures and their Self-Returning Walks', Croatica Chemica Acta, 56(3), str. 405-409. Preuzeto s: https://hrcak.srce.hr/194210 (Datum pristupa: 25.02.2021.)
Vancouver
Knop JV, Muller WR, Szymanski K, Randić M, Trinajstić N. Note on Acyclic Structures and their Self-Returning Walks. Croatica Chemica Acta [Internet]. 1983 [pristupljeno 25.02.2021.];56(3):405-409. Dostupno na: https://hrcak.srce.hr/194210
IEEE
J.V. Knop, W.R. Muller, K. Szymanski, M. Randić i N. Trinajstić, "Note on Acyclic Structures and their Self-Returning Walks", Croatica Chemica Acta, vol.56, br. 3, str. 405-409, 1983. [Online]. Dostupno na: https://hrcak.srce.hr/194210. [Citirano: 25.02.2021.]

Sažetak
All rooted trees up to 16 vertices are generated and the se1f-
returning walks for the roots are calculated. The systematic search
for isocodal vertices in the same tree or in different trees revealed
that there are isospectral trees without isocodal points, that there
non-isospectral trees with isocodal points, and that there are single
trees containing several isocodal vertices.

Hrčak ID: 194210

URI
https://hrcak.srce.hr/194210

Posjeta: 156 *