hrcak mascot   Srce   HID

Professional paper

Generalized eigenproblem

Marija Miloloža Pandur ; Odjel za matematiku, Sveučilište u Osijeku
Marinela Pilj ; Odjel za matematiku, Sveučilište u Osijeku

Fulltext: croatian, pdf (343 KB) pages 1-13 downloads: 325* cite
APA 6th Edition
Miloloža Pandur, M. & Pilj, M. (2018). Generalizirani svojstveni problem. Osječki matematički list, 18 (1), 1-13. Retrieved from https://hrcak.srce.hr/203873
MLA 8th Edition
Miloloža Pandur, Marija and Marinela Pilj. "Generalizirani svojstveni problem." Osječki matematički list, vol. 18, no. 1, 2018, pp. 1-13. https://hrcak.srce.hr/203873. Accessed 25 Nov. 2020.
Chicago 17th Edition
Miloloža Pandur, Marija and Marinela Pilj. "Generalizirani svojstveni problem." Osječki matematički list 18, no. 1 (2018): 1-13. https://hrcak.srce.hr/203873
Harvard
Miloloža Pandur, M., and Pilj, M. (2018). 'Generalizirani svojstveni problem', Osječki matematički list, 18(1), pp. 1-13. Available at: https://hrcak.srce.hr/203873 (Accessed 25 November 2020)
Vancouver
Miloloža Pandur M, Pilj M. Generalizirani svojstveni problem. Osječki matematički list [Internet]. 2018 [cited 2020 November 25];18(1):1-13. Available from: https://hrcak.srce.hr/203873
IEEE
M. Miloloža Pandur and M. Pilj, "Generalizirani svojstveni problem", Osječki matematički list, vol.18, no. 1, pp. 1-13, 2018. [Online]. Available: https://hrcak.srce.hr/203873. [Accessed: 25 November 2020]

Abstracts
In this paper we introduce the generalized eigenproblem for a given
matrix pair which is a generalization of the ordinary eigenproblem for
a single matrix. We point out the difficulties that appear before the
generalized eigenproblem can be defined. Also, we define equivalent
and simultaneously diagonalizable matrix pairs and show what this
concept means for the generalized eigenproblem.

Keywords
ordinary eigenproblem; generalized eigenproblem; eigenvalue; eigenvector; regular and singular matrix pair; equivalent matrix pairs

Hrčak ID: 203873

URI
https://hrcak.srce.hr/203873

[croatian]

Visits: 567 *