Osculating Circles of Conics in Cayley-Klein Planes
Gunter Weiss
; Institute for Geometry, Technical University of Dresden, Dresden, Germany
Ana Sliepčević
; Faculty of Civil Engineering, University of Zagreb, Zagreb, Hrvatska
APA 6th Edition Weiss, G. i Sliepčević, A. (2009). Osculating Circles of Conics in Cayley-Klein Planes. KoG, 13. (13.), 7-12. Preuzeto s https://hrcak.srce.hr/47616
MLA 8th Edition Weiss, Gunter i Ana Sliepčević. "Osculating Circles of Conics in Cayley-Klein Planes." KoG, vol. 13., br. 13., 2009, str. 7-12. https://hrcak.srce.hr/47616. Citirano 16.01.2021.
Chicago 17th Edition Weiss, Gunter i Ana Sliepčević. "Osculating Circles of Conics in Cayley-Klein Planes." KoG 13., br. 13. (2009): 7-12. https://hrcak.srce.hr/47616
Harvard Weiss, G., i Sliepčević, A. (2009). 'Osculating Circles of Conics in Cayley-Klein Planes', KoG, 13.(13.), str. 7-12. Preuzeto s: https://hrcak.srce.hr/47616 (Datum pristupa: 16.01.2021.)
Vancouver Weiss G, Sliepčević A. Osculating Circles of Conics in Cayley-Klein Planes. KoG [Internet]. 2009 [pristupljeno 16.01.2021.];13.(13.):7-12. Dostupno na: https://hrcak.srce.hr/47616
IEEE G. Weiss i A. Sliepčević, "Osculating Circles of Conics in Cayley-Klein Planes", KoG, vol.13., br. 13., str. 7-12, 2009. [Online]. Dostupno na: https://hrcak.srce.hr/47616. [Citirano: 16.01.2021.]
Sažetak In the Euclidean plane there are several well-known methods of constructing an osculating (Euclidean) circle to a conic. We show that at least one of these methods can be “translated” into a construction scheme of finding the osculating non-Euclidean circle to a given conic in a hyperbolic or elliptic plane. As an example we will deal with the
Klein-model of these non-Euclidean planes, as the projective geometric point of view is common to the Euclidean as well as to the non-Euclidean cases.