hrcak mascot   Srce   HID

Izvorni znanstveni članak

Duality between stable strong shape morphisms and stable homotopy classes

Qamil Haxhibeqiri
Slawomir Nowak

Puni tekst: engleski, pdf (152 KB) str. 297-310 preuzimanja: 225* citiraj
APA 6th Edition
Haxhibeqiri, Q. i Nowak, S. (2001). Duality between stable strong shape morphisms and stable homotopy classes. Glasnik matematički, 36 (2), 297-310. Preuzeto s https://hrcak.srce.hr/4842
MLA 8th Edition
Haxhibeqiri, Qamil i Slawomir Nowak. "Duality between stable strong shape morphisms and stable homotopy classes." Glasnik matematički, vol. 36, br. 2, 2001, str. 297-310. https://hrcak.srce.hr/4842. Citirano 16.10.2021.
Chicago 17th Edition
Haxhibeqiri, Qamil i Slawomir Nowak. "Duality between stable strong shape morphisms and stable homotopy classes." Glasnik matematički 36, br. 2 (2001): 297-310. https://hrcak.srce.hr/4842
Harvard
Haxhibeqiri, Q., i Nowak, S. (2001). 'Duality between stable strong shape morphisms and stable homotopy classes', Glasnik matematički, 36(2), str. 297-310. Preuzeto s: https://hrcak.srce.hr/4842 (Datum pristupa: 16.10.2021.)
Vancouver
Haxhibeqiri Q, Nowak S. Duality between stable strong shape morphisms and stable homotopy classes. Glasnik matematički [Internet]. 2001 [pristupljeno 16.10.2021.];36(2):297-310. Dostupno na: https://hrcak.srce.hr/4842
IEEE
Q. Haxhibeqiri i S. Nowak, "Duality between stable strong shape morphisms and stable homotopy classes", Glasnik matematički, vol.36, br. 2, str. 297-310, 2001. [Online]. Dostupno na: https://hrcak.srce.hr/4842. [Citirano: 16.10.2021.]

Sažetak
Let SStrShn be the full subcategory of the stable strong shape category SStrSh of pointed compacta whose objects are all pointed subcompacta of Sn and let SOn be the full subcategory of the stable homotopy category S whose objects are all open subsets of Sn. In this paper it is shown that there exists a contravariant additive functor Dn : SStrShn → SOn such that Dn(X) = Sn \ X for every subcompactum X of Sn and Dn : SStrShn(X, Y) → SOn(Sn \ Y, Sn \ X) is an isomorphism of abelian groups for all compacta X, Y ⊂ Sn. Moreover, if X ⊂ Y ⊂ Sn, j : Sn \ Y → Sn \ X is an inclusion and α ∈ SStrShn(X, Y) is induced by the inclusion of X into Y then Dn(α) = {j}.

Ključne riječi
Stable strong shape; stable homotopy; proper map; proper homotopy

Hrčak ID: 4842

URI
https://hrcak.srce.hr/4842

Posjeta: 429 *