hrcak mascot   Srce   HID

Izvorni znanstveni članak
https://doi.org/10.3336/gm.49.1.01

The edge wiener index of suspensions, bottlenecks, and thorny graphs

Yaser Alizadeh   ORCID icon orcid.org/0000-0002-8533-0425 ; Department of Mathematics, Hakim Sabzevari University, Sabzevar, Iran
Ali Iranmanesh ; Department of Mathematics, Tarbiat Modares University, P. O. Box: 14115-137, Tehran, Iran
Tomislav Došlić ; Faculty of Civil Engineering, University of Zagreb, Kačićeva 26, 10000 Zagreb, Croatia
Mahdieh Azari ; Department of Mathematics, Kazerun Branch, Islamic Azad University, P. O. Box: 73135-168, Kazerun, Iran

Puni tekst: engleski, pdf (138 KB) str. 1-12 preuzimanja: 9* citiraj
APA 6th Edition
Alizadeh, Y., Iranmanesh, A., Došlić, T. i Azari, M. (2014). The edge wiener index of suspensions, bottlenecks, and thorny graphs. Glasnik matematički, 49 (1), 1-12. https://doi.org/10.3336/gm.49.1.01
MLA 8th Edition
Alizadeh, Yaser, et al. "The edge wiener index of suspensions, bottlenecks, and thorny graphs." Glasnik matematički, vol. 49, br. 1, 2014, str. 1-12. https://doi.org/10.3336/gm.49.1.01. Citirano 16.07.2019.
Chicago 17th Edition
Alizadeh, Yaser, Ali Iranmanesh, Tomislav Došlić i Mahdieh Azari. "The edge wiener index of suspensions, bottlenecks, and thorny graphs." Glasnik matematički 49, br. 1 (2014): 1-12. https://doi.org/10.3336/gm.49.1.01
Harvard
Alizadeh, Y., et al. (2014). 'The edge wiener index of suspensions, bottlenecks, and thorny graphs', Glasnik matematički, 49(1), str. 1-12. doi: https://doi.org/10.3336/gm.49.1.01
Vancouver
Alizadeh Y, Iranmanesh A, Došlić T, Azari M. The edge wiener index of suspensions, bottlenecks, and thorny graphs. Glasnik matematički [Internet]. 2014 [pristupljeno 16.07.2019.];49(1):1-12. doi: https://doi.org/10.3336/gm.49.1.01
IEEE
Y. Alizadeh, A. Iranmanesh, T. Došlić i M. Azari, "The edge wiener index of suspensions, bottlenecks, and thorny graphs", Glasnik matematički, vol.49, br. 1, str. 1-12, 2014. [Online]. doi: https://doi.org/10.3336/gm.49.1.01

Sažetak
Let G be a simple connected graph. The distance between the edges g and f E(G) is defined as the distance between the corresponding vertices g and f in the line graph of G. The edge-Wiener index of G is defined as the sum of such distances between all pairs of edges of the graph. Let G1+G2 and G1ο G2 be the join and the corona of graphs G1 and G2, respectively. In this paper, we present explicit formulas for the edge-Wiener index for these graphs. Then we apply our results to compute the edge-Wiener index of suspensions, bottlenecks, and thorny graphs.

Ključne riječi
Distance; edge-Wiener index; join; corona

Hrčak ID: 122515

URI
https://hrcak.srce.hr/122515

Posjeta: 157 *