Izvorni znanstveni članak
k-generalized Fibonacci numbers of the form 1+2^{n_1}+4^{n_2}+\cdots+(2^{k})^{n_k}
Carlos Alexis Gómez Ruiz
orcid.org/0000-0003-1126-2973
; Departamento de Matematicas, Universidad del Valle, Santiago de Cali, Colombia
Florian Luca
; School of Mathematics, University of the Witwatersrand, South Africa
Sažetak
A generalization of the well-known Fibonacci sequence is the k-generalized Fibonacci sequence (F_n^{(k)})_{n>= 2-k} whose first k terms are 0, ..., 0, 1 and each term afterwards is the sum of the preceding k terms. In this paper, we investigate k-generalized Fibonacci numbers written in the form 1+2^{n_1}+4^{n_2}+\cdots+(2^{k})^{n_k}, for non-negative integers n_i, with n_k >= max{ n_i | 1<= i <= k-1}.
Ključne riječi
Fibonacci numbers; Lower bounds for nonzero linear forms in logarithms of algebraic numbers
Hrčak ID:
129579
URI
Datum izdavanja:
5.12.2014.
Posjeta: 1.788 *