hrcak mascot   Srce   HID

Izvorni znanstveni članak

Steiner point of a triangle in an isotropic plane

Ružica Kolar-Šuper   ORCID icon orcid.org/0000-0002-8945-2745 ; Faculty of Education, University of Osijek, 31 000 Osijek, Croatia
Zdenka Kolar-Begović   ORCID icon orcid.org/0000-0001-8710-8628 ; Department of Mathematics, University of Osijek, 31 000 Osijek, Croatia
Vladimir Volenec ; Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia

Puni tekst: engleski, pdf (213 KB) str. 83-95 preuzimanja: 248* citiraj
APA 6th Edition
Kolar-Šuper, R., Kolar-Begović, Z. i Volenec, V. (2016). Steiner point of a triangle in an isotropic plane. Rad Hrvatske akademije znanosti i umjetnosti, (528=20), 83-95. Preuzeto s https://hrcak.srce.hr/165787
MLA 8th Edition
Kolar-Šuper, Ružica, et al. "Steiner point of a triangle in an isotropic plane." Rad Hrvatske akademije znanosti i umjetnosti, vol. , br. 528=20, 2016, str. 83-95. https://hrcak.srce.hr/165787. Citirano 22.10.2021.
Chicago 17th Edition
Kolar-Šuper, Ružica, Zdenka Kolar-Begović i Vladimir Volenec. "Steiner point of a triangle in an isotropic plane." Rad Hrvatske akademije znanosti i umjetnosti , br. 528=20 (2016): 83-95. https://hrcak.srce.hr/165787
Harvard
Kolar-Šuper, R., Kolar-Begović, Z., i Volenec, V. (2016). 'Steiner point of a triangle in an isotropic plane', Rad Hrvatske akademije znanosti i umjetnosti, (528=20), str. 83-95. Preuzeto s: https://hrcak.srce.hr/165787 (Datum pristupa: 22.10.2021.)
Vancouver
Kolar-Šuper R, Kolar-Begović Z, Volenec V. Steiner point of a triangle in an isotropic plane. Rad Hrvatske akademije znanosti i umjetnosti [Internet]. 2016 [pristupljeno 22.10.2021.];(528=20):83-95. Dostupno na: https://hrcak.srce.hr/165787
IEEE
R. Kolar-Šuper, Z. Kolar-Begović i V. Volenec, "Steiner point of a triangle in an isotropic plane", Rad Hrvatske akademije znanosti i umjetnosti, vol., br. 528=20, str. 83-95, 2016. [Online]. Dostupno na: https://hrcak.srce.hr/165787. [Citirano: 22.10.2021.]

Sažetak
The concept of the Steiner point of a triangle in an isotropic plane is defined in this paper. Some different concepts connected with the introduced concepts such as the harmonic polar line, Ceva’s triangle, the complementary point of the Steiner point of an allowable triangle are studied. Some other statements about the Steiner point and the connection with the concept of the complementary triangle, the anticomplementary triangle, the tangential triangle of an allowable triangle as well as the Brocard diameter and the Euler circle are also proved.

Ključne riječi
Isotropic plane; Steiner point; Steiner ellipse; Ceva’s triangle; orthic triangle

Hrčak ID: 165787

URI
https://hrcak.srce.hr/165787

Posjeta: 457 *