hrcak mascot   Srce   HID

Izvorni znanstveni članak

On the hyper-order of solutions of nonhomogeneous linear differential equations

Cheriet Nour El Imane Khadidja ; Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB), Algeria
Hamani Karima ; Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB), Algeria

Puni tekst: engleski, pdf (189 KB) str. 133-147 preuzimanja: 267* citiraj
APA 6th Edition
Khadidja, C.N.E.I. i Karima, H. (2017). On the hyper-order of solutions of nonhomogeneous linear differential equations. Mathematical Communications, 22 (1), 133-147. Preuzeto s https://hrcak.srce.hr/176768
MLA 8th Edition
Khadidja, Cheriet Nour El Imane i Hamani Karima. "On the hyper-order of solutions of nonhomogeneous linear differential equations." Mathematical Communications, vol. 22, br. 1, 2017, str. 133-147. https://hrcak.srce.hr/176768. Citirano 12.04.2021.
Chicago 17th Edition
Khadidja, Cheriet Nour El Imane i Hamani Karima. "On the hyper-order of solutions of nonhomogeneous linear differential equations." Mathematical Communications 22, br. 1 (2017): 133-147. https://hrcak.srce.hr/176768
Harvard
Khadidja, C.N.E.I., i Karima, H. (2017). 'On the hyper-order of solutions of nonhomogeneous linear differential equations', Mathematical Communications, 22(1), str. 133-147. Preuzeto s: https://hrcak.srce.hr/176768 (Datum pristupa: 12.04.2021.)
Vancouver
Khadidja CNEI, Karima H. On the hyper-order of solutions of nonhomogeneous linear differential equations. Mathematical Communications [Internet]. 2017 [pristupljeno 12.04.2021.];22(1):133-147. Dostupno na: https://hrcak.srce.hr/176768
IEEE
C.N.E.I. Khadidja i H. Karima, "On the hyper-order of solutions of nonhomogeneous linear differential equations", Mathematical Communications, vol.22, br. 1, str. 133-147, 2017. [Online]. Dostupno na: https://hrcak.srce.hr/176768. [Citirano: 12.04.2021.]

Sažetak
In this paper, we study the hyper-order of solutions of higher order linear differential equation

\begin{equation*} f^{(k)}+A_{k-1}(z)f^{(k-1)}+\ldots A_{1}(z)f^{\prime }+A_{0}(z)f=H(z),\end{equation*}

where $k\geq 2$ is an integer, $A_{j}\left( z\right) $ $(j=0,1,\ldots,k-1)$ and $H\left( z\right) $ $\left( \not\equiv 0\right) $ are entire functions or polynomials. We improve previous results given by Xu and Cao.

Ključne riječi
Linear dierential equation; Entire function,; Hyper-order

Hrčak ID: 176768

URI
https://hrcak.srce.hr/176768

Posjeta: 431 *