hrcak mascot   Srce   HID

Izvorni znanstveni članak
https://doi.org/10.3336/gm.52.2.05

Cubic structure

Vladimir Volenec ; Department of Mathematics, University of Zagreb, Bijenička cesta 30, HR-10 000 Zagreb, Croatia
Zdenka Kolar-Begović   ORCID icon orcid.org/0000-0001-8710-8628 ; Department of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, HR-31 000 Osijek, Croatia
Ružica Kolar-Šuper   ORCID icon orcid.org/0000-0002-8945-2745 ; Faculty of Education, University of Osijek, Cara Hadrijana 10, HR-31 000 Osijek, Croatia

Puni tekst: engleski, pdf (114 KB) str. 247-256 preuzimanja: 205* citiraj
APA 6th Edition
Volenec, V., Kolar-Begović, Z. i Kolar-Šuper, R. (2017). Cubic structure. Glasnik matematički, 52 (2), 247-256. https://doi.org/10.3336/gm.52.2.05
MLA 8th Edition
Volenec, Vladimir, et al. "Cubic structure." Glasnik matematički, vol. 52, br. 2, 2017, str. 247-256. https://doi.org/10.3336/gm.52.2.05. Citirano 22.10.2021.
Chicago 17th Edition
Volenec, Vladimir, Zdenka Kolar-Begović i Ružica Kolar-Šuper. "Cubic structure." Glasnik matematički 52, br. 2 (2017): 247-256. https://doi.org/10.3336/gm.52.2.05
Harvard
Volenec, V., Kolar-Begović, Z., i Kolar-Šuper, R. (2017). 'Cubic structure', Glasnik matematički, 52(2), str. 247-256. https://doi.org/10.3336/gm.52.2.05
Vancouver
Volenec V, Kolar-Begović Z, Kolar-Šuper R. Cubic structure. Glasnik matematički [Internet]. 2017 [pristupljeno 22.10.2021.];52(2):247-256. https://doi.org/10.3336/gm.52.2.05
IEEE
V. Volenec, Z. Kolar-Begović i R. Kolar-Šuper, "Cubic structure", Glasnik matematički, vol.52, br. 2, str. 247-256, 2017. [Online]. https://doi.org/10.3336/gm.52.2.05

Sažetak
In this paper we examine the relationships between cubic structures, totally symmetric medial quasigroups, and commutative groups. We prove that the existence of a cubic structure on the given set is equivalent to the existence of a totally symmetric medial quasigroup on this set, and it is equivalent to the existence of a commutative group on this set. We give also some interesting geometric examples of cubic structures. By means of these examples, each theorem that can be proved for an abstract cubic structure has a number of geometric consequences. In the final part of the paper, we prove also some simple properties of abstract cubic structures.

Ključne riječi
TSM-quasigroup; commutative group; ternary relation; cubic structure

Hrčak ID: 189332

URI
https://hrcak.srce.hr/189332

Posjeta: 425 *