Skoči na glavni sadržaj

Izvorni znanstveni članak

Products of Fermat or Mersenne numbers in some sequences

Mohamadou Bachabi ; Institut de Mathematiques et de Sciences Physiques (IMSP), Universite d’Abomey-Calavi (UAC), Dangbo, Benin
Alain Togbé ; Department of Mathematics and Statistics, Purdue University Northwest, Hammond, USA


Puni tekst: engleski pdf 154 Kb

str. 265-285

preuzimanja: 88

citiraj


Sažetak

Let \(P_{n}\) be an n-th Padovan number, \(E_{n}\) an n-th Perrin number, and \(N_{n}\) an n-th Nayarana number. In this paper, we solve the Diophantine equations
\(P_{n}=(2^{a}-1)(2^{b}-1)\),
\(E_{n}=(2^{a}-1)(2^{b}-1\),
and \(N_{n}=(2^{a} \pm 1)(2^{b}\pm 1),\)
in positive unknowns n, a, and b. Therefore, we determine the Padovan or Perrin numbers that are products of two Mersenne numbers and the Nayarana numbers that are Mersenne numbers and two Fermat numbers.

Ključne riječi

Diophantine equations, Padovan sequence, Perrin sequence, Narayana sequence, linear forms in logarithms, reduction method

Hrčak ID:

321269

URI

https://hrcak.srce.hr/321269

Datum izdavanja:

7.10.2024.

Posjeta: 158 *