Skoči na glavni sadržaj

Stručni rad

https://doi.org/10.19279/TVZ.PD.2021-9-2-06

ZNANJE I UČENJE JEDNOG NEURONA

Predrag Valožić ; Tehničko veleučilište u Zagrebu, Zagreb, Hrvatska, profesor u mirovini


Puni tekst: hrvatski pdf 927 Kb

str. 120-129

preuzimanja: 183

citiraj


Sažetak

Analizirani su ishodi učenja linearnog umjetnog neurona s različitim prethodnim znanjem. Temeljem zajedničkog matematičkog modela neurona i jednakog predloška za učenje primjerima su ilustrirana svojstva različitih modela učenja, više – manje matematiziranih. Pokazano je kako su „napredniji“ modeli brži, ali osjetljiviji su i rigidni u ponuđenim rješenjima. „Djetinjastiji“, bazni modeli učenja su sporiji, ali univerzalniji su i „maštovitiji“. Zajednički kriterij ocjene „ishoda učenja“ je ispravnost rješenja problema – dizajn rekurzivnog generatora sinusne sekvence određenih ciljanih značajki: amplitude i frekvencije.

Ključne riječi

linearni neuron; učenje; linearna kombinacija; inverz; pseudoinverz; povratna veza

Hrčak ID:

273767

URI

https://hrcak.srce.hr/273767

Datum izdavanja:

20.7.2021.

Podaci na drugim jezicima: engleski

Posjeta: 974 *

accessibility

closePristupačnostrefresh

Ako želite spremiti trajne postavke, kliknite Spremi, ako ne - vaše će se postavke poništiti kad zatvorite preglednik.