Skoči na glavni sadržaj

Stručni rad

Stochastic processes defined by the integral with respect to a random measure

Danijel Danijel Grahovac orcid id orcid.org/0000-0001-6918-3456 ; Odjel za matematiku, Sveučilište J. J. Strossmayera u Osi
Dominik Mihalčić orcid id orcid.org/0009-0007-1003-5767 ; Odjel za matematiku, Sveučilište J. J. Strossmayera u Osijeku


Puni tekst: hrvatski pdf 415 Kb

str. 31-44

preuzimanja: 153

citiraj


Sažetak

This paper first explains the concept of infinite divisibility for random variables and processes. As a special form of stochastic process,random measures are defined and the most important examples are given. The integral with respect to a random measure is first defined or simple and then for general functions. Necessary and sufficient conditions for the integrand that ensure the integral is well defined are stated. Explicit expressions are given for the characteristic triplet of an infinitely divisible random variable defined by the integral. In the last part, examples of processes defined by the stochastic integral
and their most important properties are given.

Ključne riječi

infinite divisibility, random measure, Lévy-Khintchine formula, Lévy processes

Hrčak ID:

310199

URI

https://hrcak.srce.hr/310199

Datum izdavanja:

10.12.2023.

Podaci na drugim jezicima: hrvatski

Posjeta: 585 *