Skip to the main content

Original scientific paper

https://doi.org/10.15255/KUI.2022.085

Machine Learning and Neural Networks for Modelling the Retention of PPhACs by NF/RO

Yamina Ammi ; Laboratory of Biomaterials and Transport Phenomena (LBMPT), University of Médéa, 26 000 Médéa, Algeria *
Cherif Si-Moussa orcid id orcid.org/0000-0001-5727-2742 ; Laboratory of Biomaterials and Transport Phenomena (LBMPT), University of Médéa, 26 000 Médéa, Algeria
Salah Hanini ; Laboratory of Biomaterials and Transport Phenomena (LBMPT), University of Médéa, 26 000 Médéa, Algeria

* Corresponding author.


Full text: english pdf 3.019 Kb

page 617-626

downloads: 177

cite


Abstract

The retention of polar pharmaceutical active compounds (PPhACs) by nanofiltration and reverse osmosis (NF/RO) membranes is of paramount importance in membrane separation processes. The retention of 21 PPhACs was correlated using artificial intelligence techniques: multi-layer perceptron (MLP), feedforward neural network with radial basis function (RBF), and support vector machine (SVM). A database of 541 retention values has been collected from the literature. The results showed a high predictive capacity of the MLP model for the retention of PPhACs by NF/RO with a very high correlation coefficient (R = 0.9714) and a very low root mean squared error (RMSE = 3.9139 %) for the entire data set. The comparison between the three models showed the superiority of the MLP model. The sensitivity analysis emphasised that the retention of PPhACs is governed by three interactions arranged in descending order: polarity interactions (hydrophobicity/hydrophilicity), electrostatic repulsion, and steric hindrance. This research suggests that the PPhACs retention on the NF/RO membrane strongly depends on the topological polar surface area.

Keywords

machine learning; neural networks; modelling; retention; PPhACs; nanofiltration; reverse osmosis

Hrčak ID:

309800

URI

https://hrcak.srce.hr/309800

Publication date:

11.11.2023.

Article data in other languages: croatian

Visits: 649 *