hrcak mascot   Srce   HID

Food Technology and Biotechnology, Vol.55 No.2 Lipanj 2017.

Prethodno priopćenje
https://doi.org/10.17113/ftb.55.02.17.5009

Proizvodnja γ-dekalaktona u različitim uvjetima s pomoću dvaju sojeva kvasca

Dayana Pereira de Andrade ; Department of Biology, Federal University of Lavras, Campus Universitario,
Beatriz Ferreira Carvalho ; Department of Animal Science, Federal University of Lavras, Campus Universitario, BR-37200-000, Lavras, MG, Brazil
Rosane Freitas Schwan ; Department of Biology, Federal University of Lavras, Campus Universitario,
Disney Ribeiro Dias   ORCID icon orcid.org/0000-0002-1010-1484 ; Department of Food Science, Federal University of Lavras, Campus Universitario, BR-37200-000, Lavras, MG, Brazil

Puni tekst: engleski, pdf (355 KB) str. 225-230 preuzimanja: 115* citiraj
APA 6th Edition
de Andrade, D.P., Ferreira Carvalho, B., Freitas Schwan, R. i Ribeiro Dias, D. (2017). Production of γ-Decalactone by Yeast Strains under Different Conditions. Food Technology and Biotechnology, 55 (2), 225-230. https://doi.org/10.17113/ftb.55.02.17.5009
MLA 8th Edition
de Andrade, Dayana Pereira, et al. "Production of γ-Decalactone by Yeast Strains under Different Conditions." Food Technology and Biotechnology, vol. 55, br. 2, 2017, str. 225-230. https://doi.org/10.17113/ftb.55.02.17.5009. Citirano 19.07.2018.
Chicago 17th Edition
de Andrade, Dayana Pereira, Beatriz Ferreira Carvalho, Rosane Freitas Schwan i Disney Ribeiro Dias. "Production of γ-Decalactone by Yeast Strains under Different Conditions." Food Technology and Biotechnology 55, br. 2 (2017): 225-230. https://doi.org/10.17113/ftb.55.02.17.5009
Harvard
de Andrade, D.P., et al. (2017). 'Production of γ-Decalactone by Yeast Strains under Different Conditions', Food Technology and Biotechnology, 55(2), str. 225-230. doi: https://doi.org/10.17113/ftb.55.02.17.5009
Vancouver
de Andrade DP, Ferreira Carvalho B, Freitas Schwan R, Ribeiro Dias D. Production of γ-Decalactone by Yeast Strains under Different Conditions. Food Technology and Biotechnology [Internet]. 14.06.2017. [pristupljeno 19.07.2018.];55(2):225-230. doi: https://doi.org/10.17113/ftb.55.02.17.5009
IEEE
D.P. de Andrade, B. Ferreira Carvalho, R. Freitas Schwan i D. Ribeiro Dias, "Production of γ-Decalactone by Yeast Strains under Different Conditions", Food Technology and Biotechnology, vol.55, br. 2, str. 225-230, Srpanj 2018. [Online]. doi: https://doi.org/10.17113/ftb.55.02.17.5009

Rad u XML formatu

Sažetak
γ-Dekalakton je sastojak arome koji se, ako je dobiven biotehnološkom proizvodnjom uz pomoć mikroorganizama, smatra prirodnim proizvodom. Svrha je ovoga rada bila ispitati različite uvjete proizvodnje γ-dekalaktona s pomoću tropskih sojeva kvasca Yarrowia lipolytica CCMA 0242 i Lindnera saturnus CCMA 0243. Rast kvasca Y. lipolytica CCMA 0242 i proizvodnja γ-dekalaktona bili su izraženiji u podlozi s ricinusovim uljem nego s glicerolom. Koncentracija γ-dekalaktona dobivena šaržnom fermentacijom nije se bitno razlikovala od one dobivene fermentacijom s pritokom supstrata. S pomoću kvasca L. saturnus CCMA 0243 proizvedeno je više γ-dekalaktona pri pH=5, a s pomoću soja Y. lipolytica CCMA 0242 pri pH=6. Soj L. saturnus CCMA 0243 proizveo je više γ-dekalaktona od soja Y. lipolytica CCMA 0242 pri istim uvjetima fermentacije. Sirovi glicerol nije dobar supstrat za proizvodnju γ-dekalaktona s pomoću soja Y. lipolytica CCMA 0242, jer su bolji rezultati postignuti u podlozi s 30 % ricinusovog ulja. Proizvodnja je γ-dekalaktona bila bolja s pomoću soja L. saturnus CCMA 0243, pa se taj kvasac može smatrati alternativnim proizvođačem γ-dekalaktona u biotehnološkim procesima.

Ključne riječi
ricinusovo ulje; sirovi glicerol; Lindnera saturnus; mikrobna proizvodnja γ-dekalaktona; Yarrowia lipolytica

Hrčak ID: 183069

URI
https://hrcak.srce.hr/183069

Reference

1 

Maume KA, Cheetham PSJ. The production of γ-decalactone by fermentation of castor oil. Biocatal Biotransform. 1991;5:79–97. DOI: http://dx.doi.org/10.3109/10242429109014857

2 

Gomes N, Teixeira JA, Belo I. The use of methyl ricinoleate in lactone production by Yarrowia lipolytica: aspects of bioprocess operation that influence the overall performance. Biocatal Biotransform. 2010;28:227–34. DOI: http://dx.doi.org/10.3109/10242422.2010.493208

3 

Moradi H, Asadollahi MA, Nahvi I. Improved γ-decalactone production from castor oil by fed-batch cultivation of Yarrowia lipolytica. Biocatal Agric Biotechnol. 2013;2:64–8. DOI: http://dx.doi.org/10.1016/j.bcab.2012.11.001

4 

da Silva GP, Mack M, Contiero J. Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv. 2009;27:30–9. DOI: http://dx.doi.org/10.1016/j.biotechadv.2008.07.006 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/18775486

5 

Souza KST, Schwan RF, Dias DR. Lipid and citric acid production by wild yeasts grown in glycerol. J Microbiol Biotechnol. 2014;24:497–506. DOI: http://dx.doi.org/10.4014/jmb.1310.10084 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24473455

6 

Pagot Y, Le Clainche A, Nicaud JM, Waché Y, Belin JM. Peroxisomal β-oxidation activities and γ-decalactone production by the yeast Yarrowia lipolytica. Appl Microbiol Biotechnol. 1998;49:295–300. DOI: http://dx.doi.org/10.1007/s002530051172 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/9581293

7 

Waché Y, Aguedo M, Choquet A, Gatfield IL, Nicaud JM, Belin JM. Role of β-oxidation enzymes in γ-decalactone production by the yeast Yarrowia lipolytica. Appl Environ Microbiol. 2001;67:5700–4. DOI: http://dx.doi.org/10.1128/AEM.67.12.5700-5704.2001 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/11722925

8 

Lee SL, Cheng HY, Chen WC, Chou CC. Effect of physical factors on the production of γ-decalactone by immobilized cells of Sporidiobolus salmonicolor. Process Biochem. 1999;34:845–50. https://doi.org/S0032-9592(99)00010-2 DOI: http://dx.doi.org/10.1016/S0032-9592(99)00010-2

9 

Gomes N, Teixeira JA, Belo I. Empirical modelling as an experimental approach to optimize lactone production. Catal Sci Technol. 2011;1:86–92. DOI: http://dx.doi.org/10.1039/c0cy00017e

10 

Waché Y, Aguedo M, Nicaud JM, Belin JM. Catabolism of hydroxyacids and biotechnological production of lactones by Yarrowia lipolytica. Appl Microbiol Biotechnol. 2003;61:393–404. DOI: http://dx.doi.org/10.1007/s00253-002-1207-1 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/12764554

11 

Soares GPA, Souza KST, Vilela LF, Schwan RF, Dias DR. γ-Decalactone production by Yarrowia lipolytica and Lindnera saturnus in crude glycerol. Prep Biochem Biotechnol. 2017;47: DOI: http://dx.doi.org/10.1080/10826068.2017.1286601 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/28151056

12 

Miguel MGCP, Cardoso PG, Magalhães KT, Schwan RF. Profile of microbial communities present in tibico (sugary kefir) grains from different Brazilian states. World J Microbiol Biotechnol. 2011;27:1875–84. DOI: http://dx.doi.org/10.1007/s11274-010-0646-6

13 

Carvalho FP, de Souza AC, Magalhães-Guedes KT, Dias DR, Silva CF, Schwan RF. Yeasts diversity in Brazilian Cerrado soils: study of the enzymatic activities. Afr J Microbiol Res. 2013;7:4176–90. DOI: http://dx.doi.org/10.5897/AJMR2013.5752

14 

Gomes N, Waché Y, Teixeira JA, Belo I. Oil-in-water emulsions characterization by laser granulometry and impact on γ-decalactone production in Yarrowia lipolytica. Biotechnol Lett. 2011;33:1601–6. DOI: http://dx.doi.org/10.1007/s10529-011-0593-9 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21431848

15 

Gomes N, Teixeira JA, Belo I. Fed-batch versus batch cultures of Yarrowia lipolytica for γ-decalactone production from methyl ricinoleate. Biotechnol Lett. 2012;34:649–54. DOI: http://dx.doi.org/10.1007/s10529-011-0824-0 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22160330

16 

Braga A, Belo I. Production of γ-decalactone by Yarrowia lipolytica: insights into experimental conditions and operating mode optimization. J Chem Technol Biotechnol. 2014;90:559–65. DOI: http://dx.doi.org/10.1002/jctb.4349

17 

Ferreira DF. Sisvar: a computer statistical analysis system. Cienc Agrotec. 2011;35:1039–42. DOI: http://dx.doi.org/10.1590/S1413-70542011000600001

18 

Ooi TL, Yong KC, Hazimah AH, Dzulkefly K, Wan Yunus WMZ. Glycerol residue: a rich source of glycerol and medium chain fatty acids. J Oleo Sci. 2004;53:29–33. DOI: http://dx.doi.org/10.5650/jos.53.29

19 

Lee SL, Cheng HY, Chen WC, Chou CC. Production of γ-decalactone from ricinoleic acid by immobilized cells of Sporidiobolus salmonicolor. Process Biochem. 1998;33:453–9. DOI: http://dx.doi.org/10.1016/S0032-9592(98)00013-2

20 

Gomes N, Aguedo M, Teixeira J, Belo I. Oxygen mass transfer in a biphasic medium: influence on the conversion of methyl ricinoleate into γ-decalactone by the yeast Yarrowia lipolytica. Biochem Eng J. 2007;35:380–6. DOI: http://dx.doi.org/10.1016/j.bej.2007.02.002

21 

Braga A, Mesquita DP, Amaral AL, Ferreira EC, Belo I. Aroma production by Yarrowia lipolytica in airlift and stirred tank bioreactors: differences in yeast metabolism and morphology. Biochem Eng J. 2015;93:55–62. DOI: http://dx.doi.org/10.1016/j.bej.2014.09.006

22 

Bakker BM, Overkamp KM, van Maris AJA, Kötter P, Luhik MAH, van Dijken JP, et al. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev. 2001;25:15–37. DOI: http://dx.doi.org/10.1111/j.1574-6976.2001.tb00570.x PubMed: http://www.ncbi.nlm.nih.gov/pubmed/11152939

23 

Aguedo M, Gomes N, Garcia EE, Waché Y, Mota M, Teixeira JA, et al. γ-Decalactone production by Yarrowia lipolytica under increased O2 transfer rates. Biotechnol Lett. 2005;27:1617–21. DOI: http://dx.doi.org/10.1007/s10529-005-2517-z PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16245183

[engleski]

Posjeta: 165 *