hrcak mascot   Srce   HID

Food Technology and Biotechnology, Vol.56 No.2 Lipanj 2018.

Pregledni rad
https://doi.org/10.17113/ftb.56.02.18.5428

Pregledni prikaz proizvodnje druge generacije bioetanola iz otpadne biomase

Katarzyna Robak ; Lodz University of Technology, Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Department of Spirit and Yeast Technology, Wolczanska 171/173, PL 90-924 Lodz, Poland
Maria Balcerek ; Lodz University of Technology, Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Department of Spirit and Yeast Technology, Wolczanska 171/173, PL 90-924 Lodz, Poland

Puni tekst: hrvatski, pdf (395 KB) str. 174-187 preuzimanja: 18* citiraj
APA 6th Edition
Robak, K. i Balcerek, M. (2018). Pregledni prikaz proizvodnje druge generacije bioetanola iz otpadne biomase. Food Technology and Biotechnology, 56 (2), 174-187. https://doi.org/10.17113/ftb.56.02.18.5428
MLA 8th Edition
Robak, Katarzyna i Maria Balcerek. "Pregledni prikaz proizvodnje druge generacije bioetanola iz otpadne biomase." Food Technology and Biotechnology, vol. 56, br. 2, 2018, str. 174-187. https://doi.org/10.17113/ftb.56.02.18.5428. Citirano 24.09.2018.
Chicago 17th Edition
Robak, Katarzyna i Maria Balcerek. "Pregledni prikaz proizvodnje druge generacije bioetanola iz otpadne biomase." Food Technology and Biotechnology 56, br. 2 (2018): 174-187. https://doi.org/10.17113/ftb.56.02.18.5428
Harvard
Robak, K., i Balcerek, M. (2018). 'Pregledni prikaz proizvodnje druge generacije bioetanola iz otpadne biomase', Food Technology and Biotechnology, 56(2), str. 174-187. doi: https://doi.org/10.17113/ftb.56.02.18.5428
Vancouver
Robak K, Balcerek M. Pregledni prikaz proizvodnje druge generacije bioetanola iz otpadne biomase. Food Technology and Biotechnology [Internet]. 29.06.2018. [pristupljeno 24.09.2018.];56(2):174-187. doi: https://doi.org/10.17113/ftb.56.02.18.5428
IEEE
K. Robak i M. Balcerek, "Pregledni prikaz proizvodnje druge generacije bioetanola iz otpadne biomase", Food Technology and Biotechnology, vol.56, br. 2, str. 174-187, lipanj 2018. [Online]. doi: https://doi.org/10.17113/ftb.56.02.18.5428
Puni tekst: engleski, pdf (395 KB) str. 174-187 preuzimanja: 23* citiraj
APA 6th Edition
Robak, K. i Balcerek, M. (2018). Review of Second Generation Bioethanol Production from Residual Biomass. Food Technology and Biotechnology, 56 (2), 174-187. https://doi.org/10.17113/ftb.56.02.18.5428
MLA 8th Edition
Robak, Katarzyna i Maria Balcerek. "Review of Second Generation Bioethanol Production from Residual Biomass." Food Technology and Biotechnology, vol. 56, br. 2, 2018, str. 174-187. https://doi.org/10.17113/ftb.56.02.18.5428. Citirano 24.09.2018.
Chicago 17th Edition
Robak, Katarzyna i Maria Balcerek. "Review of Second Generation Bioethanol Production from Residual Biomass." Food Technology and Biotechnology 56, br. 2 (2018): 174-187. https://doi.org/10.17113/ftb.56.02.18.5428
Harvard
Robak, K., i Balcerek, M. (2018). 'Review of Second Generation Bioethanol Production from Residual Biomass', Food Technology and Biotechnology, 56(2), str. 174-187. doi: https://doi.org/10.17113/ftb.56.02.18.5428
Vancouver
Robak K, Balcerek M. Review of Second Generation Bioethanol Production from Residual Biomass. Food Technology and Biotechnology [Internet]. 29.06.2018. [pristupljeno 24.09.2018.];56(2):174-187. doi: https://doi.org/10.17113/ftb.56.02.18.5428
IEEE
K. Robak i M. Balcerek, "Review of Second Generation Bioethanol Production from Residual Biomass", Food Technology and Biotechnology, vol.56, br. 2, str. 174-187, lipanj 2018. [Online]. doi: https://doi.org/10.17113/ftb.56.02.18.5428

Rad u XML formatu

Sažetak
Zbog klimatskih promjena i iscrpljivanja zaliha fosilnih goriva postoji velika potreba za pronalaskom alternative nafti kao pogonskom gorivu. U ovom je radu dan pregled proizvodnje druge generacije bioetanola, koja se od prve generacije te narednih generacija razlikuje u iskorištavanju lignoceluloze kao sirovine. Opisani su sastojci lignocelulozne biomase, kao što su celuloza, hemiceluloza i lignin, te koraci u tehnološkom postupku, uključujući prethodnu obradu, enzimsku hidrolizu, fermentaciju, destilaciju i dehidraciju. Prethodnom obradom povećala se površina ugljikohidrata potrebna za enzimsku saharifikaciju, te se smanjilo nastajanje inhibitora. Enzimskom se hidrolizom oslobađaju fermentabilni šećeri, koji se djelovanjem mikroorganizama prevode u etanol. Hidrolizati dobiveni prethodnom obradom i enzimskom hidrolizom sadržavaju različite šećere, a najviše glukoze i ksiloze. Za fermentaciju oba šećera neophodni su genetički modificiranimikroorganizmi. Suvišak štetnih inhibitora poput slabih organskih kiselina, derivata furana i fenolnih spojeva može se ukloniti iz hidrolizata detoksikacijom prije fermentacije. Za učinkovitu provedbu saharifikacije potrebno je omogućiti istodobnu aktivnost egzogenih hemicelulaza i enzima što razgrađuju celulozu. Konvencionalni sojevi destilerijskog kvasca ne mogu fermentirati pentozu u etanol, a samo nekoliko prirodnih mikroorganizama, uključujući sojeve kvasaca Candida shehatae, Pichia (Scheffersomyces) stipites i Pachysolen tannophilus, imaju sposobnost razgradnje ksiloze u etanol. Enzimska hidroliza i fermentacija mogu se provesti na nekoliko načina, uključujući zasebnu saharifikaciju i fermentaciju, te simultanu saharifikaciju i fermentaciju. Mikroorganizmi koji fermentiraju pentozu mogu se proizvesti genetičkim inženjerstvom, i to umetanjem gena za kodiranje ksiloze u metabolizam odabranog mikroorganizma radi optimiranja iskorištenja ksiloze iz hidrolizata.

Ključne riječi
druga generacija bioetanola; biogorivo; lignocelulozna biomasa; prethodna obrada; nusproizvodi; enzimska hidroliza; genetički modificirani mikroorganizmi

Hrčak ID: 203442

URI
https://hrcak.srce.hr/203442

Reference

1 

Choudhary J, Singh S, Nain L. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments. J Biosci Bioeng. 2017;123(3):342–6. DOI: http://dx.doi.org/10.1016/j.jbiosc.2016.10.007 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/27856231

2 

Zhou H, Cheng JS, Wang BL, Fink GR, Stephanopoulos G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng. 2012;14(6):611–22. DOI: http://dx.doi.org/10.1016/j.ymben.2012.07.011 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22921355

3 

Demain AL, Newcomb M, Wu JHD. Cellulase, Clostridia, and ethanol. Microbiol Mol Biol Rev. 2005;69(1):124–54. DOI: http://dx.doi.org/10.1128/MMBR.69.1.124-154.2005 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/15755956

4 

Hill J, Nelson E, Tilman D, Polasky S, Tiffany D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA. 2006;103(30):11206–10. DOI: http://dx.doi.org/10.1073/pnas.0604600103 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16837571

5 

Pocket guide to ethanol 2017. Washington, DC, USA: Renewable Fuels Association; 2017. Available from: http://www.ethanolrfa.org/2017/02/rfa-releases-2017-ethanol-industry-outlook-pocket-guide/.

6 

Senthilkimar V, Gunasekaran P. Bioethanol production from cellulosic substrates: Engineered bacteria and process integration challenges. J Sci Ind Res (India). 2005;64:845–53.

7 

Sims REH, Mabee W, Saddler JN, Taylor M. An overview of second generation biofuel technologies. Bioresour Technol. 2010;101(6):1570–80. DOI: http://dx.doi.org/10.1016/j.biortech.2009.11.046 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19963372

8 

Berg C. World ethanol production and trade to 2000 and beyond. Winchester, VA, USA: The Online Distillery Network for Distilleries and Fuel Ethanol Plants Worldwide; 1999. Available from: http://www.distill.com/berg/.

9 

Ho DP, Ngo HH, Guo W. A mini review on renewable sources for biofuel. Bioresour Technol. 2014;169:742–9. DOI: http://dx.doi.org/10.1016/j.biortech.2014.07.022 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25115598

10 

Balat M, Balat H, Öz C. Progress in bioethanol processing. Pror Energy Combust Sci. 2008;34(5):551–73. DOI: http://dx.doi.org/10.1016/j.pecs.2007.11.001

11 

Buijs NA, Siewers V, Nielsen J. Advanced biofuel production by the yeast saccharomyces cerevisiae. Curr Opin Chem Biol. 2013;17(3):480–8. DOI: http://dx.doi.org/10.1016/j.cbpa.2013.03.036 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23628723

12 

Jambo SA, Abdulla R, Mohd Azhar SH, Marbawi H, Gansau JA, Ravindra P. A review on third generation bioethanol feedstock. Renew Sustain Energy Rev. 2016;65:756–69. DOI: http://dx.doi.org/10.1016/j.rser.2016.07.064

13 

Sarris D, Papanikolaou S. Biotechnological production of ethanol: Biochemistry, processes and technologies. Eng Life Sci. 2016;16(4):307–29. DOI: http://dx.doi.org/10.1002/elsc.201400199

14 

Thompson W, Meyer S. Second generation biofuels and food crops: Co-products or competitors? Glob Food Secur. 2013;2(2):89–96. DOI: http://dx.doi.org/10.1016/j.gfs.2013.03.001

15 

Achinas S, Euverink GJW. Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electron J Biotechnol. 2016;23:44–53. DOI: http://dx.doi.org/10.1016/j.ejbt.2016.07.006

16 

Kim JH, Block DE, Mills DA. Simultaneous consumption of pentose and hexose sugars: An optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol. 2010;88(5):1077–85. DOI: http://dx.doi.org/10.1007/s00253-010-2839-1 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20838789

17 

Lee WC, Kuan WC. Miscanthus as cellulosic biomass for bioethanol production. Biotechnol J. 2015;10(6):840–54. DOI: http://dx.doi.org/10.1002/biot.201400704 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26013948

18 

Chang VS, Kaar WE, Burr B, Holtzapple MT. Simultaneous saccharification and fermentation of lime-treated biomass. Biotechnol Lett. 2001;23(16):1327–33. DOI: http://dx.doi.org/10.1023/A:1010594027988

19 

Hongzhang C, Liying L. Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresour Technol. 2007;98(3):666–76. DOI: http://dx.doi.org/10.1016/j.biortech.2006.02.029 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16574408

20 

Cao NJ, Krishnan MS, Du JX, Gong CS, Ho NWY, Chen ZD, et al. Ethanol production from corn cob pretreated by the ammonia steeping process using genetically engineered yeast. Biotechnol Lett. 1996;18(9):1013–8. DOI: http://dx.doi.org/10.1007/BF00129723

21 

Melekwe EI, Lateef SA, Rowland G, Ekpeyong E. Bioethanol production potentials of corn cob, waste office paper and leaf of Thaumatococcus daniellii. Br J Appl Sci Technol. 2016;17(4):1–10. DOI: http://dx.doi.org/10.9734/BJAST/2016/27101

22 

Saha BC, Iten LB, Cotta MA, Wu YV. Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnol Prog. 2005;21(3):816–22. DOI: http://dx.doi.org/10.1021/bp049564n PubMed: http://www.ncbi.nlm.nih.gov/pubmed/15932261

23 

Neves PV, Pitarelo AP, Ramos LP. Production of cellulosic ethanol from sugarcane bagasse by steam explosion: Effect of extractives content, acid catalysis and different fermentation technologies. Bioresour Technol. 2016;208:184–94. DOI: http://dx.doi.org/10.1016/j.biortech.2016.02.085 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26943936

24 

Frankó B, Galbe M, Wallberg O. Influence of bark on fuel ethanol production from steam-pretreated spruce. Biotechnol Biofuels. 2015;8:15. DOI: http://dx.doi.org/10.1186/s13068-015-0199-x PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25705256

25 

Stoffel RB, Neves PV, Felissia FE, Ramos LP, Gassa LM, Area MC. Hemicellulose extraction from slash pine sawdust by steam explosion with sulfuric acid. Biomass Bioenergy. 2017;107:93–101. DOI: http://dx.doi.org/10.1016/j.biombioe.2017.09.019

26 

Galbe M, Zacchi G. A review of the production of ethanol from softwood. Appl Microbiol Biotechnol. 2002;59(6):618–28. DOI: http://dx.doi.org/10.1007/s00253-002-1058-9 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/12226717

27 

Perego P, Converti A, Palazzi E, Del Borghi M, Ferraiolo G. Fermentation of hardwood hemicellulose hydrolysate by Pachysolen tannophilus, candida shehatae and Pichia stipitis. J Ind Microbiol. 1990;6(3):157–64. DOI: http://dx.doi.org/10.1007/BF01577690

28 

Njoku SI, Iversen JA, Uellendahl H, Ahring BK. Production of ethanol from hemicellulose fraction of cocksfoot grass using Pichia stipitis. Sustain Chem Process. 2013;1:13. DOI: http://dx.doi.org/10.1186/2043-7129-1-13

29 

Sasaki C, Okumura R, Asada C, Nakamura Y. Steam explosion treatment for ethanol production from branches pruned from pear trees by simultaneous saccharification and fermentation. Biosci Biotechnol Biochem. 2014;78(1):160–6. DOI: http://dx.doi.org/10.1080/09168451.2014.877818 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25036499

30 

Wilkinson S, Smart KA, James S, Cook DJ. Bioethanol production from brewers spent grains using a fungal consolidated bioprocessing (CBP) approach. BioEnergy Res. 2017;10(1):146–57. DOI: http://dx.doi.org/10.1007/s12155-016-9782-7

31 

Kricka W, James TC, Fitzpatrick J, Bond U. Engineering Saccharomyces pastorianus for the co-utilisation of xylose and cellulose from biomass. Microb Cell Fact. 2015;14:61. DOI: http://dx.doi.org/10.1186/s12934-015-0242-4 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25928878

32 

Prasetyo J, Naruse K, Kato T, Boonchird C, Harashima S, Park EY. Bioconversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and thermotolerant Saccharomyces cerevisiae TJ14. Biotechnol Biofuels. 2011;4:35. DOI: http://dx.doi.org/10.1186/1754-6834-4-35 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21958421

33 

Das M, Raychaudhuri A, Ghosh SK. Supply chain of bioethanol production from whey: A review. Procedia Environ Sci. 2016;35:833–46. DOI: http://dx.doi.org/10.1016/j.proenv.2016.07.100

34 

Yazdani SS, Gonzalez R. Anaerobic fermentation of glycerol: A path to economic viability for the biofuels industry. Curr Opin Biotechnol. 2007;18(3):213–9. DOI: http://dx.doi.org/10.1016/j.copbio.2007.05.002 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17532205

35 

Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G. Bio-ethanol - The fuel of tomorrow from the residues of today. Trends Biotechnol. 2006;24(12):549–56. DOI: http://dx.doi.org/10.1016/j.tibtech.2006.10.004 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17050014

36 

Koller M, Salerno A, Tuffner P, Koinigg M, Böchzelt H, Schober S, et al. Characteristics and potential of micro algal cultivation strategies: A review. J Clean Prod. 2012;37:377–88. DOI: http://dx.doi.org/10.1016/j.jclepro.2012.07.044

37 

Singh A, Olsen SI. A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy. 2011;88(10):3548–55. DOI: http://dx.doi.org/10.1016/j.apenergy.2010.12.012

38 

Tye YY, Lee KT, Abdullah WNW, Leh CP. The world availability of non-wood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification. Renew Sustain Energy Rev. 2016;60:155–72. DOI: http://dx.doi.org/10.1016/j.rser.2016.01.072

39 

Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005;96(6):673–86. DOI: http://dx.doi.org/10.1016/j.biortech.2004.06.025 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/15588770

40 

Limayem A, Ricke SC. Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Pror Energy Combust Sci. 2012;38(4):449–67. DOI: http://dx.doi.org/10.1016/j.pecs.2012.03.002

41 

Zabed H, Sahu JN, Boyce AN, Faruq G. Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renew Sustain Energy Rev. 2016;66:751–74. DOI: http://dx.doi.org/10.1016/j.rser.2016.08.038

42 

Ruel K, Nishiyama Y, Joseleau JP. Crystalline and amorphous cellulose in the secondary walls of Arabidopsis. Plant Sci. 2012;193–194:48–61. DOI: http://dx.doi.org/10.1016/j.plantsci.2012.05.008 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22794918

43 

Zhao X, Zhang L, Liu D. Biomass recalcitrance. Part I: The chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefin. 2012;6(4):465–82. DOI: http://dx.doi.org/10.1002/bbb.1331

44 

Xu QS, Yan YS, Feng JX. Efficient hydrolysis of raw starch and ethanol fermentation: A novel raw starch-digesting glucoamylase from Penicillium oxalicum. Biotechnol Biofuels. 2016;9:216. DOI: http://dx.doi.org/10.1186/s13068-016-0636-5 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/27777618

45 

Peng F, Peng P, Xu F, Sun RC. Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv. 2012;30(4):879–903. DOI: http://dx.doi.org/10.1016/j.biotechadv.2012.01.018 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22306329

46 

Saha BC. Hemicellulose bioconversion. J Ind Microbiol Biotechnol. 2003;30(5):279–91. DOI: http://dx.doi.org/10.1007/s10295-003-0049-x PubMed: http://www.ncbi.nlm.nih.gov/pubmed/12698321

47 

Cardona CA, Sánchez ÓJ. Fuel ethanol production: Process design trends and integration opportunities. Bioresour Technol. 2007;98(12):2415–57. DOI: http://dx.doi.org/10.1016/j.biortech.2007.01.002 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17336061

48 

Hespell RB. Extraction and characterization of hemicellulose from the corn fiber produced by corn wet-milling processes. J Agric Food Chem. 1998;46(7):2615–9. DOI: http://dx.doi.org/10.1021/jf971040y

49 

Battaglia E, Hansen SF, Leendertse A, Madrid S, Mulder H, Nikolaev I, et al. Regulation of pentose utilisation by AraR, but not XlnR, differs in Aspergillus nidulans and Aspergillus niger. Appl Microbiol Biotechnol. 2011;91(2):387–97. DOI: http://dx.doi.org/10.1007/s00253-011-3242-2 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21484208

50 

Sindhu R, Binod P, Pandey A. Biological pretreatment of lignocellulosic biomass - An overview. Bioresour Technol. 2016;199:76–82. DOI: http://dx.doi.org/10.1016/j.biortech.2015.08.030 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26320388

51 

Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003;54:519–46. DOI: http://dx.doi.org/10.1146/annurev.arplant.54.031902.134938 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/14503002

52 

Gamage J, Lam H, Zhang Z. Bioethanol production from lignocellulosic biomass, a review. J Biobased Mater Bioenergy. 2010;4(1):3–11. DOI: http://dx.doi.org/10.1166/jbmb.2010.1071

53 

Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, et al. Lignin valorization: Improving lignin processing in the biorefinery. Science. 2014;344(6185):1246843. DOI: http://dx.doi.org/10.1126/science.1246843 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24833396

54 

Foust TD, Aden A, Dutta A, Phillips S. An economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion processes. Cellulose. 2009;16(4):547–65. DOI: http://dx.doi.org/10.1007/s10570-009-9317-x

55 

Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, et al. The path forward for biofuels and biomaterials. Science. 2006;311(5760):484–9. DOI: http://dx.doi.org/10.1126/science.1114736 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16439654

56 

Kang Q, Appels L, Tan T, Dewil R. Bioethanol from lignocellulosic biomass: Current findings determine research priorities. ScientificWorldJournal. 2014;2014:298153. DOI: http://dx.doi.org/10.1155/2014/298153 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25614881

57 

Maurya DP, Singla A, Negi S. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech. 2015;5(5):597–609. DOI: http://dx.doi.org/10.1007/s13205-015-0279-4 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/28324530

58 

Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S. Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzyme Res. 2011;2011:787532. DOI: http://dx.doi.org/10.4061/2011/787532 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21687609

59 

Kumar P, Barrett DM, Delwiche MJ, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res. 2009;48(8):3713–29. DOI: http://dx.doi.org/10.1021/ie801542g

60 

Alvira P, Negro MJ, Ballesteros I, González A, Ballesteros M. Steam explosion for wheat straw pretreatment for sugars production. Bioethanol. 2016;2(1):66–75. DOI: http://dx.doi.org/10.1515/bioeth-2016-0003

61 

Li J, Henriksson G, Gellerstedt G. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol. 2007;98(16):3061–8. DOI: http://dx.doi.org/10.1016/j.biortech.2006.10.018 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17141499

62 

Ballesteros I, Negro MJ, Oliva JM, Cabañas A, Manzanares P, Ballesteros M. Ethanol production from steam-explosion pretreated wheat straw. Appl Biochem Biotechnol. 2006;129-132(1-3):496–508. DOI: http://dx.doi.org/10.1385/ABAB:130:1:496 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16915665

63 

Lee JS, Parameswaran B, Lee JP, Park SC. Recent developments of key technologies on cellulosic ethanol production. J Sci Ind Res (India). 2008;67(11):865–73.

64 

Li H, Wu M, Xu L, Hou J, Guo T, Bao X, et al. Evaluation of industrial Saccharomyces cerevisiae strains as the chassis cell for second-generation bioethanol production. Microb Biotechnol. 2015;8(2):266–74. DOI: http://dx.doi.org/10.1111/1751-7915.12245 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/25616171

65 

Albers E, Larsson C. A comparison of stress tolerance in YPD and industrial lignocellulose-based medium among industrial and laboratory yeast strains. J Ind Microbiol Biotechnol. 2009;36(8):1085–91. DOI: http://dx.doi.org/10.1007/s10295-009-0592-1 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19462190

66 

Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour Technol. 2000;74(1):25–33. DOI: http://dx.doi.org/10.1016/S0960-8524(99)00161-3

67 

Dien BS, Cotta MA, Jeffries TW. Bacteria engineered for fuel ethanol production: Current status. Appl Microbiol Biotechnol. 2003;63(3):258–66. DOI: http://dx.doi.org/10.1007/s00253-003-1444-y PubMed: http://www.ncbi.nlm.nih.gov/pubmed/13680206

68 

Weil JR, Dien B, Bothast R, Hendrickson R, Mosier NS, Ladisch MR. Removal of fermentation inhibitors formed during pretreatment of biomass by polymeric adsorbents. Ind Eng Chem Res. 2002;41(24):6132–8. DOI: http://dx.doi.org/10.1021/ie0201056

69 

Olsson L, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol. 1996;18(5):312–31. DOI: http://dx.doi.org/10.1016/0141-0229(95)00157-3

70 

Kucera D, Benesova P, Ladicky P, Pekar M, Sedlacek P, Obruca S. Production of polyhydroxyalkanoates using hydrolyzates of spruce sawdust: Comparison of hydrolyzates detoxification by application of overliming, active carbon, and lignite. Bioengineering (Basel). 2017;4(2):53. DOI: http://dx.doi.org/10.3390/bioengineering4020053 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/28952532

71 

Enari TM, Markkanen P. Production of cellulolytic enzymes by fungi. Adv Biochem Eng. 1977;5:1–24. DOI: http://dx.doi.org/10.1007/BFb0008739

72 

Alvira P, Negro MJ, Ballesteros M. Effect of endoxylanase and α-l-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresour Technol. 2011;102(6):4552–8. DOI: http://dx.doi.org/10.1016/j.biortech.2010.12.112 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21262567

73 

Cardona F, Carrasco P, Pérez-Ortín JE, del Olmo M, Aranda A. A novel approach for the improvement of stress resistance in wine yeasts. Int J Food Microbiol. 2007;114(1):83–91. DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2006.10.043 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17187885

74 

Jönsson LJ, Alriksson B, Nilvebrant NO. Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnol Biofuels. 2013;6:16. DOI: http://dx.doi.org/10.1186/1754-6834-6-16 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23356676

75 

Briggs DE, Boulton CA, Brookes PA, Stevens R. Brewing: Science and practice. Cambridge, UK: Woodhead Publishing Limited; 2004. https://doi.org/ DOI: http://dx.doi.org/10.1201/9780203024195

76 

Spencer J, Phister TG, Smart KA, Greetham D. Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress. BMC Res Notes. 2014;7:151. DOI: http://dx.doi.org/10.1186/1756-0500-7-151 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24636079

77 

Parisutham V, Kim TH, Lee SK. Feasibilities of consolidated bioprocessing microbes: From pretreatment to biofuel production. Bioresour Technol. 2014;161:431–40. DOI: http://dx.doi.org/10.1016/j.biortech.2014.03.114 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24745899

78 

McIntosh S, Zhang Z, Palmer J, Wong HH, Doherty WOS, Vancov T. Pilot-scale cellulosic ethanol production using eucalyptus biomass pre-treated by dilute acid and steam explosion. Biofuels Bioprod Biorefin. 2016;10(4):346–58. DOI: http://dx.doi.org/10.1002/bbb.1651

79 

Wyman CE, Spindler DD, Grohmann K. Simultaneous saccharification and fermentation of several lignocellulosic feedstocks to fuel ethanol. Biomass Bioenergy. 1992;3(5):301–7. DOI: http://dx.doi.org/10.1016/0961-9534(92)90001-7

80 

Kricka W, Fitzpatrick J, Bond U. Challenges for the production of bioethanol from biomass using recombinant yeasts. Adv Appl Microbiol. 2015;92:89–125. DOI: http://dx.doi.org/10.1016/bs.aambs.2015.02.003 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26003934

81 

Olofsson K, Bertilsson M, Lidén G. A short review on SSF - An interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels. 2008;1:7. DOI: http://dx.doi.org/10.1186/1754-6834-1-7 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/18471273

82 

Chandel AK, Gonçalves BCM, Strap JL, da Silva SS. Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production. Crit Rev Biotechnol. 2015;35(3):281–93. DOI: http://dx.doi.org/10.3109/07388551.2013.841638 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24156399

83 

Dien B, Iten LB, Bothast RJ. Conversion of corn fiber to ethanol by recombinant E. coli strain FBR3. J Ind Microbiol Biotechnol. 1999;22(6):575–81. DOI: http://dx.doi.org/10.1038/sj.jim.2900628 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/10455483

84 

Zaldivar J, Nielsen J, Olsson L. Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol. 2001;56(1–2):17–34. DOI: http://dx.doi.org/10.1007/s002530100624 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/11499926

85 

Mogh Azhar SHM, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Faik AAM, et al. Yeasts in sustainable bioethanol production: A review. Biochem Biophys Rep. 2017;10:52–61. DOI: http://dx.doi.org/10.1016/j.bbrep.2017.03.003 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/29114570

86 

Martins GM, Bocchini-Martins DA, Bezzerra-Bussoli C, Pagnocca FC, Boscolo M, Monteiro DA, et al. The isolation of pentose-assimilating yeasts and their xylose fermentation potential. Braz J Microbiol. 2018;49(1):162–8. DOI: http://dx.doi.org/10.1016/j.bjm.2016.11.014 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/28888830

87 

Oreb M, Dietz H, Farwick A, Boles E. Novel strategies to improve co-fermentation of pentoses with d-glucose by recombinant yeast strains in lignocellulosic hydrolysates. Bioengineered. 2012;3(6):347–51. DOI: http://dx.doi.org/10.4161/bioe.21444 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22892590

88 

Leandro MJ, Fonseca C, Gonçalves P. Hexose and pentose transport in ascomycetous yeasts: An overview. FEMS Yeast Res. 2009;9(4):511–25. DOI: http://dx.doi.org/10.1111/j.1567-1364.2009.00509.x PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19459982

89 

Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH. Second generation bioethanol production: A critical review. Renew Sustain Energy Rev. 2016;66:631–53. DOI: http://dx.doi.org/10.1016/j.rser.2016.07.015

90 

Toivola A, Yarrow D, van Den Bosch E, van Dijken P, Scheffers WA. Alcoholic fermentation of d-xylose by yeasts. Appl Environ Microbiol. 1984;47(6):1221–3. PubMed: http://www.ncbi.nlm.nih.gov/pubmed/16346558

91 

Meinander NQ, Hahn-Hägerdal B. Influence of cosubstrate concentration on xylose conversion by recombinant, XYL1-expressing Saccharomyces cerevisiae: A comparison of different sugars and ethanol as cosubstrates. Appl Environ Microbiol. 1997;63(5):1959–64. PubMed: http://www.ncbi.nlm.nih.gov/pubmed/9143128

92 

Ko JK, Um Y, Woo HM, Kim KH, Lee SM. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Bioresour Technol. 2016;209:290–6. DOI: http://dx.doi.org/10.1016/j.biortech.2016.02.124 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26990396

93 

Kricka W, Fitzpatrick J, Bond U. Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass: A perspective. Front Microbiol. 2014;5:174. DOI: http://dx.doi.org/10.3389/fmicb.2014.00174 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24795706

94 

Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, et al. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci USA. 2011;108(2):504–9. DOI: http://dx.doi.org/10.1073/pnas.1010456108 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21187422

95 

Madson PW, Lococo DB. Recovery of volatile products from dilute high-fouling process streams. Appl Biochem Biotechnol. 2000;84–86:1049–61. DOI: http://dx.doi.org/10.1385/ABAB:84-86:1-9:1049 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/10849857

96 

Bioethanol. Zeitz, Germany: CropEnergies AG. Available from: http://www.cropenergies.com/Pdf/en/Bioethanol/Produktionsverfahren.pdf?

97 

Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour Technol. 2010;101(13):4851–61. DOI: http://dx.doi.org/10.1016/j.biortech.2009.11.093 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20042329

98 

Bhat MK, Bhat S. Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv. 1997;15(3–4):583–620. DOI: http://dx.doi.org/10.1016/S0734-9750(97)00006-2 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/14538158

99 

Arantes V, Saddler JN. Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels. 2011;4:3. DOI: http://dx.doi.org/10.1186/1754-6834-4-3 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21310050

100 

Zaldivar J, Borges A, Johansson B, Smits H, Villas-Bôas S, Nielsen J, et al. Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2002;59(4–5):436–42. DOI: http://dx.doi.org/10.1007/s00253-002-1056-y PubMed: http://www.ncbi.nlm.nih.gov/pubmed/12172606

101 

Philippidis GP, Hatzis C. Biochemical engineering analysis of critical process factors in the biomass-to-ethanol technology. Biotechnol Prog. 1997;13(3):222–31. DOI: http://dx.doi.org/10.1021/bp970017u PubMed: http://www.ncbi.nlm.nih.gov/pubmed/9190073

[engleski]

Posjeta: 62 *