hrcak mascot   Srce   HID

Food Technology and Biotechnology, Vol.56 No.2 Lipanj 2018.

Izvorni znanstveni članak
https://doi.org/10.17113/ftb.56.02.18.5349

Cloning and Characterization of Limonoid Glucosyltransferase from Kinnow Mandarin (Citrus reticulata Blanco)

Sumedha Arora ; School of Agricultural Biotechnology, Punjab Agricultural University, IN- 141004 Ludhiana, India
Prashant Mohanpuria   ORCID icon orcid.org/0000-0001-6891-4448 ; School of Agricultural Biotechnology, Punjab Agricultural University, IN- 141004 Ludhiana, India
Gurupkar Singh Sidhu ; School of Agricultural Biotechnology, Punjab Agricultural University, IN- 141004 Ludhiana, India
Inderjit Singh Yadav ; School of Agricultural Biotechnology, Punjab Agricultural University, IN- 141004 Ludhiana, India
Vandna Kumari ; Botany Department, Punjabi University, IN-147002 Patiala, India

Puni tekst: engleski, pdf (6 MB) str. 228-237 preuzimanja: 11* citiraj
APA 6th Edition
Arora, S., Mohanpuria, P., Singh Sidhu, G., Singh Yadav, I. i Kumari, V. (2018). Cloning and Characterization of Limonoid Glucosyltransferase from Kinnow Mandarin (Citrus reticulata Blanco). Food Technology and Biotechnology, 56 (2), 228-237. https://doi.org/10.17113/ftb.56.02.18.5349
MLA 8th Edition
Arora, Sumedha, et al. "Cloning and Characterization of Limonoid Glucosyltransferase from Kinnow Mandarin (Citrus reticulata Blanco)." Food Technology and Biotechnology, vol. 56, br. 2, 2018, str. 228-237. https://doi.org/10.17113/ftb.56.02.18.5349. Citirano 24.09.2018.
Chicago 17th Edition
Arora, Sumedha, Prashant Mohanpuria, Gurupkar Singh Sidhu, Inderjit Singh Yadav i Vandna Kumari. "Cloning and Characterization of Limonoid Glucosyltransferase from Kinnow Mandarin (Citrus reticulata Blanco)." Food Technology and Biotechnology 56, br. 2 (2018): 228-237. https://doi.org/10.17113/ftb.56.02.18.5349
Harvard
Arora, S., et al. (2018). 'Cloning and Characterization of Limonoid Glucosyltransferase from Kinnow Mandarin (Citrus reticulata Blanco)', Food Technology and Biotechnology, 56(2), str. 228-237. doi: https://doi.org/10.17113/ftb.56.02.18.5349
Vancouver
Arora S, Mohanpuria P, Singh Sidhu G, Singh Yadav I, Kumari V. Cloning and Characterization of Limonoid Glucosyltransferase from Kinnow Mandarin (Citrus reticulata Blanco). Food Technology and Biotechnology [Internet]. 29.06.2018. [pristupljeno 24.09.2018.];56(2):228-237. doi: https://doi.org/10.17113/ftb.56.02.18.5349
IEEE
S. Arora, P. Mohanpuria, G. Singh Sidhu, I. Singh Yadav i V. Kumari, "Cloning and Characterization of Limonoid Glucosyltransferase from Kinnow Mandarin (Citrus reticulata Blanco)", Food Technology and Biotechnology, vol.56, br. 2, str. 228-237, lipanj 2018. [Online]. doi: https://doi.org/10.17113/ftb.56.02.18.5349
Puni tekst: hrvatski, pdf (6 MB) str. 228-237 preuzimanja: 7* citiraj
APA 6th Edition
Arora, S., Mohanpuria, P., Singh Sidhu, G., Singh Yadav, I. i Kumari, V. (2018). Kloniranje i karakterizacija limonoid glukoziltransferaze iz mandarine sorte Kinnow (Citrus reticulata Blanco). Food Technology and Biotechnology, 56 (2), 228-237. https://doi.org/10.17113/ftb.56.02.18.5349
MLA 8th Edition
Arora, Sumedha, et al. "Kloniranje i karakterizacija limonoid glukoziltransferaze iz mandarine sorte Kinnow (Citrus reticulata Blanco)." Food Technology and Biotechnology, vol. 56, br. 2, 2018, str. 228-237. https://doi.org/10.17113/ftb.56.02.18.5349. Citirano 24.09.2018.
Chicago 17th Edition
Arora, Sumedha, Prashant Mohanpuria, Gurupkar Singh Sidhu, Inderjit Singh Yadav i Vandna Kumari. "Kloniranje i karakterizacija limonoid glukoziltransferaze iz mandarine sorte Kinnow (Citrus reticulata Blanco)." Food Technology and Biotechnology 56, br. 2 (2018): 228-237. https://doi.org/10.17113/ftb.56.02.18.5349
Harvard
Arora, S., et al. (2018). 'Kloniranje i karakterizacija limonoid glukoziltransferaze iz mandarine sorte Kinnow (Citrus reticulata Blanco)', Food Technology and Biotechnology, 56(2), str. 228-237. doi: https://doi.org/10.17113/ftb.56.02.18.5349
Vancouver
Arora S, Mohanpuria P, Singh Sidhu G, Singh Yadav I, Kumari V. Kloniranje i karakterizacija limonoid glukoziltransferaze iz mandarine sorte Kinnow (Citrus reticulata Blanco). Food Technology and Biotechnology [Internet]. 29.06.2018. [pristupljeno 24.09.2018.];56(2):228-237. doi: https://doi.org/10.17113/ftb.56.02.18.5349
IEEE
S. Arora, P. Mohanpuria, G. Singh Sidhu, I. Singh Yadav i V. Kumari, "Kloniranje i karakterizacija limonoid glukoziltransferaze iz mandarine sorte Kinnow (Citrus reticulata Blanco)", Food Technology and Biotechnology, vol.56, br. 2, str. 228-237, lipanj 2018. [Online]. doi: https://doi.org/10.17113/ftb.56.02.18.5349

Rad u XML formatu

Sažetak
Kinnow mandarin (Citrus reticulata Blanco) is a popular citrus crop of northwestern India and it occupies maximum fruit area in Punjab. However, citrus juice processing industry is still suffering from delayed bitterness problem caused mainly by limonoid aglycones such as limonin. In order to study citrus limonoid metabolism, limonoid glucosyltransferase (LGT) gene, which encodes a natural debittering enzyme, was isolated from the fruit tissues of Kinnow mandarin. After confirmation and characterization, its full-length gene sequence (1533 bp) was submitted to National Centre for Biotechnology Information. Citrus reticulata limonoid glucosyltransferase (CrLGT) occupies a position on an independent branch in the largest subgroup and is phylogenetically different from those in other mandarin species like C. unshiu, showing its uniqueness in several features. The transcript expression of CrLGT, evaluated in different tissues such as young leaf, flavedo, albedo, sac covering and seed of Kinnow mandarin during early (90 days after flowering (DAF)), mid (150-210 DAF) and late (240 DAF) fruit developmental stages using semi-quantitative method, showed the highest expression in flavedo. Thus, it was concluded that the isolated LGT gene has an effect on limonoid metabolic engineering in citrus. Overexpression of this gene can reduce the delayed bitterness problem in citrus juice and enhance the accumulation of specific glucosides that have anticancer effects.

Ključne riječi
Kinnow mandarin; delayed bitterness; limonoid glucosyltransferase; anticancer properties; semi-quantitative PCR

Hrčak ID: 203490

URI
https://hrcak.srce.hr/203490

Reference

1 

Indian Council of Agricultural Research-National Research Centre for Citrus. (ICAR-NRCC). Nagpur, India; 2015. Available from: http://www.ccringp.org.in/ccringp/PDF/2015/CCRINagpur(Vision2050).pdf.

2 

Statement showing the district wise area, av. yield and production of various fruit crops for the year 2014-15 in the Punjab state. Directorate of Horticulture Punjab, Punjab, India; 2015. Avaialble from: http://punjabhorticulture.com/wp-content/themes/twentyeleven/document/fruits/Fruits%202014-15.pdf.

3 

Puri M, Marwaha SS, Kothari RM, Kennedy JF. Biochemical basis of bitterness in citrus fruit juices and biotech approaches for debittering. Crit Rev Biotechnol. 1996;16(2):145–55. DOI: http://dx.doi.org/10.3109/07388559609147419

4 

Maier VP, Bennett RD, Hasegawa S. Limonin and other limonoids. In: Nagy S, Shaw P, Velduis MK, editors. Citrus science and technology. Westport, CT, USA: Avi Publishing Co; 1977. pp. 335-96.

5 

Manners GD, Breksa AP 3rd. Identifying citrus limonoid aglycones by HPLC-EI/MS and HPLC-APCI/MS techniques. Phytochem Anal. 2004;15(6):372–81. DOI: http://dx.doi.org/10.1002/pca.790 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/15595452

6 

Maier VP, Hasegawa S, Hera E. Limonin D-ring lactone hydrolase. A new enzyme from citrus seeds. Phytochemistry. 1969;8(2):405–7. DOI: http://dx.doi.org/10.1016/S0031-9422(00)85439-4

7 

Hasegawa S, Suhayda CG, Hsu WJ, Robertson GH. Purification of limonoid glucosyltransferase from navel orange albedo tissues. Phytochemistry. 1997;46(1):33–7. DOI: http://dx.doi.org/10.1016/S0031-9422(97)00216-1

8 

Endo T, Kita M, Shimada T, Moriguchi T, Hidaka T, Matsumoto R, et al. Modification of limonoid metabolism in suspension cell culture of Citrus. Plant Biotechnol. 2002;19(5):397–403. DOI: http://dx.doi.org/10.5511/plantbiotechnology.19.397

9 

Hasegawa S, Ou P, Fong CH, Herman Z, Coggins CW Jr, Atkin DR. Changes in the limonoate A-ring lactone and limonin 17-beta-D-glucopyranoside content of navel oranges during fruit growth and maturation. J Agric Food Chem. 1991;39(2):262–5. DOI: http://dx.doi.org/10.1021/jf00002a008

10 

Poulose SM, Harris ED, Patil BS. Antiproliferative effects of citrus limonoids against human neuroblastoma and colonic adenocarcinoma cells. Nutr Cancer. 2006;56(1):103–12. DOI: http://dx.doi.org/10.1207/s15327914nc5601_14 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17176224

11 

Miller EG, Porter JL, Binnie WH, Guo IY, Hasegawa S. Further studies on the anticancer activity of citrus limonoids. J Agric Food Chem. 2004;52(15):4908–12. DOI: http://dx.doi.org/10.1021/jf049698g PubMed: http://www.ncbi.nlm.nih.gov/pubmed/15264934

12 

Kim J, Jayaprakasha GK, Vikram A, Patil BS. Cancer chemopreventive properties of citrus limonoids. In: Patil BS, Jayaprakasha GK, Murthy KNC, Seeram NP, editors. Emerging trends in dietary components for preventing and combating disease. Washington, DC, USA: American Chemical Society; 2012. pp. 37-50.

13 

Chidambara Murthy KN, Jayaprakasha GK, Patil BS. Citrus limonoids and curcumin additively inhibit human colon cancer cells. Food Funct. 2013;4(5):803–10. DOI: http://dx.doi.org/10.1039/c3fo30325j PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23584140

14 

Tundis R, Loizzo MR, Menichini F. An overview on chemical aspects and potential health benefits of limonoids and their derivatives. Crit Rev Food Sci Nutr. 2014;54(2):225–50. DOI: http://dx.doi.org/10.1080/10408398.2011.581400 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/24188270

15 

Manners GD, Jacob RA, Breksa AP 3rd, Schoch TK, Hasegawa S. Bioavailability of citrus limonoids in humans. J Agric Food Chem. 2003;51(14):4156–61. DOI: http://dx.doi.org/10.1021/jf0300691 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/12822961

16 

Kita M, Hirata Y, Moriguchi T, Endo-Inagaki T, Matsumoto R, Hasegawa S, et al. Molecular cloning and characterization of a novel gene encoding limonoid UDP-glucosyltransferase in Citrus. FEBS Lett. 2000;469(2-3):173–8. DOI: http://dx.doi.org/10.1016/S0014-5793(00)01275-8 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/10713266

17 

Kita M, Endo T, Shimada T, Moriguchi T, Hirata Y, Hasegawa S, et al. Allelic structures of UDP-glucose: Limonoid glucosyltransferase affect limonoid bitterness in Citrus unshiu and C. sinensis. Euphytica. 2003;132:87–94. DOI: http://dx.doi.org/10.1023/A:1024603114997

18 

Zaare-Nahandi F, Hosseinkhani S, Zamani Z, Asadi-Abkenar A, Omidbaigi R. Delay expression of limonoid UDP-glucosyltransferase makes delayed bitterness in citrus. Biochem Biophys Res Commun. 2008;371(1):59–62. DOI: http://dx.doi.org/10.1016/j.bbrc.2008.03.157 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/18407832

19 

Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al. GenBank. Nucleic Acids Res. 2013;41 D1:D36–42. DOI: http://dx.doi.org/10.1093/nar/gks1195 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23193287

20 

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–8. DOI: http://dx.doi.org/10.1093/bioinformatics/btm404 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17846036

21 

Marshall OJ. PerlPrimer: Cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics. 2004;20(15):2471–2. DOI: http://dx.doi.org/10.1093/bioinformatics/bth254 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/15073005

22 

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10. DOI: http://dx.doi.org/10.1016/S0022-2836(05)80360-2 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/2231712

23 

Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003;31(13):3784–8. DOI: http://dx.doi.org/10.1093/nar/gkg563 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/12824418

24 

Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The PFam protein families database: Towards a more sustainable future. Nucleic Acids Res. 2016;44 D1:D279–85. DOI: http://dx.doi.org/10.1093/nar/gkv1344 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26673716

25 

Nielsen H. Protein function prediction. In: Kihara D, editor. Methods in molecular biology, vol. 1611. New York, NY, USA: Springer Science+Business Media LLC; 2017. pp. 59-73. https://doi.org/ DOI: http://dx.doi.org/10.1007/978-1-4939-7015-5

26 

Vincze T, Posfai J, Roberts RJ. NEBcutter: A program to cleave DNA with restriction enzymes. Nucleic Acids Res. 2003;31(13):3688–91. DOI: http://dx.doi.org/10.1093/nar/gkg526 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/12824395

27 

Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY, Geer RC, et al. CDD: Conserved domains and protein three-dimensional structure. Nucleic Acids Res. 2013;41 D1:D348–52. DOI: http://dx.doi.org/10.1093/nar/gks1243 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/23197659

28 

Martin RC, Mok MC, Mok DWS. A gene encoding the cytokinin enzyme zeatin O-xylosyltransferase of Phaseolus vulgaris. Plant Physiol. 1999;120(2):553–8. DOI: http://dx.doi.org/10.1104/pp.120.2.553 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/10364407

29 

Ross J, Li Y, Lim E, Bowles DJ. Higher plant glycosyltransferases. Genome Biol. 2001;2(2):S3004. DOI: http://dx.doi.org/10.1186/gb-2001-2-2-reviews3004 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/11182895

30 

Swingle WT. The botany of citrus and its wild relatives. In: Reuther W, Webber HJ, Batchelor LD, editors. The citrus industry. Berkeley, CA, USA: University of California Press; 1967. pp. 389-90.

31 

Daniel JJ, Owens DK, McIntosh CA. Secondary product glucosyltransferase and putative glucosyltransferase expression during Citrus paradisi (c.v. Duncan) growth and development. Phytochemistry. 2011;72(14-15):1732–8. DOI: http://dx.doi.org/10.1016/j.phytochem.2011.04.024 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21605881

32 

Herman Z, Fong CH, Hasegawa S. Biosynthesis of limonoid glucosides in navel orange. Phytochemistry. 1991;30(5):1487–8. DOI: http://dx.doi.org/10.1016/0031-9422(91)84193-V

33 

Fong CH, Hasegawa S, Coggins CW Jr, Atkin DR, Miyake M. Contents of limonoids and limonin 17-β-D-glucopyranoside in fruit tissue of Valencia orange during fruit growth and maturation. J Agric Food Chem. 1992;40(7):1178–81. DOI: http://dx.doi.org/10.1021/jf00019a019

34 

Moriguchi T, Kita M, Hasegawa S, Omura M. Molecular approach to citrus flavonoid and limonoid biosynthesis. J Food Agric Environ. 2003;1:22–5.

35 

Hasegawa S, Miyake M. Biochemistry and biological functions of citrus limonoids. Food Rev Int. 1996;12(4):413–35. DOI: http://dx.doi.org/10.1080/87559129609541089

36 

Fong CH, Hasegawa S, Herman Z, Ou P. Biosynthesis of limonoid glucosides in lemon (Citrus limon). J Sci Food Agric. 1991;54(3):393–8. DOI: http://dx.doi.org/10.1002/jsfa.2740540310

37 

Arora S, Patel E, Sharma P, Sidhu GS, Mohanpuria P. Citrus limonoids: extraction, and metabolic engineering for human health. Book of abstracts of the 19th Punjab Science Congress on Influence of Science and Technology on Environment and Human Health; 2016 February 7-9, Mohali, Punjab, India. p. B-P03.

[hrvatski]

Posjeta: 31 *