hrcak mascot   Srce   HID

Food Technology and Biotechnology, Vol.56 No.2 Lipanj 2018.

Kratko priopćenje
https://doi.org/10.17113/ftb.56.02.18.5561

Time-Kill Kinetics of Lipid Fractions Isolated from Condiments against Foodborne Pathogens

Ayeza Naeem ; Department of Microbiology, University of Karachi, Main University Road, Karachi, 75270 Sindh, Pakistan
Tanveer Abbas ; Department of Microbiology, University of Karachi, Main University Road, Karachi, 75270 Sindh, Pakistan
Tahira Mohsin Ali ; Department of Food Science and Technology, University of Karachi, Main University Road, 75270 Sindh, Pakistan
Abid Hasnain ; Department of Food Science and Technology, University of Karachi, Main University Road, 75270 Sindh, Pakistan

Puni tekst: engleski, pdf (723 KB) str. 278-286 preuzimanja: 19* citiraj
APA 6th Edition
Naeem, A., Abbas, T., Mohsin Ali, T. i Hasnain, A. (2018). Time-Kill Kinetics of Lipid Fractions Isolated from Condiments against Foodborne Pathogens. Food Technology and Biotechnology, 56 (2), 278-286. https://doi.org/10.17113/ftb.56.02.18.5561
MLA 8th Edition
Naeem, Ayeza, et al. "Time-Kill Kinetics of Lipid Fractions Isolated from Condiments against Foodborne Pathogens." Food Technology and Biotechnology, vol. 56, br. 2, 2018, str. 278-286. https://doi.org/10.17113/ftb.56.02.18.5561. Citirano 21.11.2018.
Chicago 17th Edition
Naeem, Ayeza, Tanveer Abbas, Tahira Mohsin Ali i Abid Hasnain. "Time-Kill Kinetics of Lipid Fractions Isolated from Condiments against Foodborne Pathogens." Food Technology and Biotechnology 56, br. 2 (2018): 278-286. https://doi.org/10.17113/ftb.56.02.18.5561
Harvard
Naeem, A., et al. (2018). 'Time-Kill Kinetics of Lipid Fractions Isolated from Condiments against Foodborne Pathogens', Food Technology and Biotechnology, 56(2), str. 278-286. doi: https://doi.org/10.17113/ftb.56.02.18.5561
Vancouver
Naeem A, Abbas T, Mohsin Ali T, Hasnain A. Time-Kill Kinetics of Lipid Fractions Isolated from Condiments against Foodborne Pathogens. Food Technology and Biotechnology [Internet]. 2018 [pristupljeno 21.11.2018.];56(2):278-286. doi: https://doi.org/10.17113/ftb.56.02.18.5561
IEEE
A. Naeem, T. Abbas, T. Mohsin Ali i A. Hasnain, "Time-Kill Kinetics of Lipid Fractions Isolated from Condiments against Foodborne Pathogens", Food Technology and Biotechnology, vol.56, br. 2, str. 278-286, 2018. [Online]. doi: https://doi.org/10.17113/ftb.56.02.18.5561
Puni tekst: hrvatski, pdf (723 KB) str. 278-286 preuzimanja: 15* citiraj
APA 6th Edition
Naeem, A., Abbas, T., Mohsin Ali, T. i Hasnain, A. (2018). Kinetika inhibicije rasta patogenih mikroorganizama prisutnih u hrani pomoću lipidnih frakcija izoliranih iz začinskog bilja. Food Technology and Biotechnology, 56 (2), 278-286. https://doi.org/10.17113/ftb.56.02.18.5561
MLA 8th Edition
Naeem, Ayeza, et al. "Kinetika inhibicije rasta patogenih mikroorganizama prisutnih u hrani pomoću lipidnih frakcija izoliranih iz začinskog bilja." Food Technology and Biotechnology, vol. 56, br. 2, 2018, str. 278-286. https://doi.org/10.17113/ftb.56.02.18.5561. Citirano 21.11.2018.
Chicago 17th Edition
Naeem, Ayeza, Tanveer Abbas, Tahira Mohsin Ali i Abid Hasnain. "Kinetika inhibicije rasta patogenih mikroorganizama prisutnih u hrani pomoću lipidnih frakcija izoliranih iz začinskog bilja." Food Technology and Biotechnology 56, br. 2 (2018): 278-286. https://doi.org/10.17113/ftb.56.02.18.5561
Harvard
Naeem, A., et al. (2018). 'Kinetika inhibicije rasta patogenih mikroorganizama prisutnih u hrani pomoću lipidnih frakcija izoliranih iz začinskog bilja', Food Technology and Biotechnology, 56(2), str. 278-286. doi: https://doi.org/10.17113/ftb.56.02.18.5561
Vancouver
Naeem A, Abbas T, Mohsin Ali T, Hasnain A. Kinetika inhibicije rasta patogenih mikroorganizama prisutnih u hrani pomoću lipidnih frakcija izoliranih iz začinskog bilja. Food Technology and Biotechnology [Internet]. 2018 [pristupljeno 21.11.2018.];56(2):278-286. doi: https://doi.org/10.17113/ftb.56.02.18.5561
IEEE
A. Naeem, T. Abbas, T. Mohsin Ali i A. Hasnain, "Kinetika inhibicije rasta patogenih mikroorganizama prisutnih u hrani pomoću lipidnih frakcija izoliranih iz začinskog bilja", Food Technology and Biotechnology, vol.56, br. 2, str. 278-286, 2018. [Online]. doi: https://doi.org/10.17113/ftb.56.02.18.5561

Rad u XML formatu

Sažetak
Lipid fractions that are extracted from condiments have a wide array of biological potential and are commonly utilized for medicinal and culinary applications. This investigation aims at determining the antimicrobial potential of lipid fractions isolated using two different solvent systems against five foodborne pathogens. The antibacterial efficacy was tested after 0, 1, 2, 3 and 24 h of incubation with the active agent. The leakage of cellular content was assessed at 1 and 2 h of incubation. Scanning electron microscope (SEM) images were obtained after 18 h of contact time with lipid fractions at their minimum inhibitory concentration (MIC). From the results obtained from time-kill and cell constituents release tests, it could be concluded that during 3 and 1 h of incubation, the lipid fractions were more potent against Gram-negative isolates (Escherichia coli ATCC 8739). However, prolonged incubation with the active agent inhibited Gram-positive isolate, i.e. Listeria monocytogenes ATCC 13932. SEM images of treated microorganisms also confirmed the inhibitory action of selected lipid fractions against all the tested pathogens. The cellular morphology of the bacteria was completely altered after 18 h of incubation with the lipid fractions. The results of the present study corroborate significant inhibitory effects and disruption in bacterial cell integrity following prolonged incubation with these lipid fractions. The results also affirm the use of the tested lipid fractions in food systems.

Ključne riječi
time-kill kinetics; scanning electron microscopy; cell constituent release; foodborne pathogens

Hrčak ID: 203497

URI
https://hrcak.srce.hr/203497

Reference

1 

Mandal PK, Biswas AK, Choi K, Pal UK. Methods for rapid detection of foodborne pathogens: An overview. Am J Food Technol. 2011;6(2):87–102. DOI: http://dx.doi.org/10.3923/ajft.2011.87.102

2 

Carrasco E, Pérez-Rodríguez F, Valero A, García-Gimeno R, Zurera G. Growth of Listeria monocytogenes on shredded, ready-to-eat iceberg lettuce. Food Control. 2008;19(5):487–94. DOI: http://dx.doi.org/10.1016/j.foodcont.2007.05.014

3 

Gutierrez J, Bourke P, Lonchamp J, Barry-Ryan C. Impact of plant essential oils on microbiological, organoleptic and quality markers of minimally processed vegetables. Innov Food Sci Emerg Technol. 2009;10(2):195–202. DOI: http://dx.doi.org/10.1016/j.ifset.2008.10.005

4 

Xu W, Qu W, Huang K, Guo F, Yang J, Zhao H, et al. Antibacterial effect of grapefruit seed extract on food-borne pathogens and its application in the preservation of minimally processed vegetables. Postharvest Biol Technol. 2007;45(1):126–33. DOI: http://dx.doi.org/10.1016/j.postharvbio.2006.11.019

5 

Antonio CM, Abriouel H, López RL, Omar NB, Valdivia E, Gálvez A. Enhanced bactericidal activity of enterocin AS-48 in combination with essential oils, natural bioactive compounds and chemical preservatives against Listeria monocytogenes in ready-to-eat salad. Food Chem Toxicol. 2009;47(9):2216–23. DOI: http://dx.doi.org/10.1016/j.fct.2009.06.012 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19520136

6 

Tiwari BK, Valdramidis VP, O’Donnell CP, Muthukumarappan K, Bourke P, Cullen PJ. Application of natural antimicrobials for food preservation. J Agric Food Chem. 2009;57(14):5987–6000. DOI: http://dx.doi.org/10.1021/jf900668n PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19548681

7 

Tajkarimi MM, Ibrahim SA, Cliver DO. Antimicrobial herb and spice compounds in food. Food Control. 2010;21(9):1199–218. DOI: http://dx.doi.org/10.1016/j.foodcont.2010.02.003

8 

Shan B, Cai YZ, Brooks JD, Corke H. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int J Food Microbiol. 2007;117(1):112–9. DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2007.03.003 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17449125

9 

Chien PJ, Sheu F, Yang FH. Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. J Food Eng. 2007;78(1):225–9. DOI: http://dx.doi.org/10.1016/j.jfoodeng.2005.09.022

10 

Shan B, Cai YZ, Brooks JD, Corke H. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int J Food Microbiol. 2007;117(1):112–9. DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2007.03.003 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17449125

11 

Donsì F, Annunziata M, Sessa M, Ferrari G. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. Lebensm Wiss Technol. 2011;44(9):1908–14. DOI: http://dx.doi.org/10.1016/j.lwt.2011.03.003

12 

Cheikh-Rouhou S, Besbes S, Hentati B, Blecker C, Deroanne C, Attia H. Nigella sativa L.: Chemical composition and physicochemical characteristics of lipid fraction. Food Chem. 2007;101(2):673–81. DOI: http://dx.doi.org/10.1016/j.foodchem.2006.02.022

13 

Naeem A, Abbas T, Ali TM, Hasnain A. Inactivation of food borne pathogens by lipid fractions of culinary condiments and their nutraceutical properties. Microbiol Res. 2018;9(1). Forthcoming DOI: http://dx.doi.org/10.4081/mr.2018.7465

14 

Hsouna AB, Trigui M, Mansour RB, Jarraya RM, Damak M, Jaoua S. Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. Int J Food Microbiol. 2011;148(1):66–72. DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2011.04.028 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/21601302

15 

Di Pasqua R, Betts G, Hoskins N, Edwards M, Ercolini D, Mauriello G. Membrane toxicity of antimicrobial compounds from essential oils. J Agric Food Chem. 2007;55(12):4863–70. DOI: http://dx.doi.org/10.1021/jf0636465 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17497876

16 

IBM Downloading IBM SPSS Statistics 24, Armonk, NY, USA. Available from: http://www01.ibm.com/support/docview.wss?uid=swg24041224.

17 

Sandri I, Zacaria J, Fracaro F, Delamare APL, Echeverrigaray S. Antimicrobial activity of the essential oils of Brazilian species of the genus Cunila against foodborne pathogens and spoiling bacteria. Food Chem. 2007;103(3):823–8. DOI: http://dx.doi.org/10.1016/j.foodchem.2006.09.032

18 

Brahmi F, Madani K, Dahmoune F, Rahmani T, Bousabaa K, Oukmanou S, et al. Optimization of solvent extraction of antioxidants (phenolic compounds) from Algerian mint (Mentha spicata L.). Pharmacogn Commun. 2012;2(4):72–86. DOI: http://dx.doi.org/10.5530/pc.2012.4.10

19 

Zhou S, Hou Z, Li N, Qin Q. Development of a SYBR Green I real-time PCR for quantitative detection of Vibrio alginolyticus in seawater and seafood. J Appl Microbiol. 2007;103(5):1897–906. DOI: http://dx.doi.org/10.1111/j.1365-2672.2007.03420.x PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17953599

20 

O’ Grady J, Sedano-Balbás S, Maher M, Smith T, Barry T. Rapid real-time PCR detection of Listeria monocytogenes in enriched food samples based on the ssrA gene, a novel diagnostic target. Food Microbiol. 2008;25(1):75–84. DOI: http://dx.doi.org/10.1016/j.fm.2007.07.007 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/17993379

21 

Negi PS. Plant extracts for the control of bacterial growth: Efficacy, stability and safety issues for food application. Int J Food Microbiol. 2012;156(1):7–17. DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2012.03.006 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/22459761

22 

Moghimi R, Ghaderi L, Rafati H, Aliahmadi A, McClements DJ. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chem. 2016;194:410–5. DOI: http://dx.doi.org/10.1016/j.foodchem.2015.07.139 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26471573

23 

Pinto E, Vale-Silva L, Cavaleiro C, Salgueiro L. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J Med Microbiol. 2009;58(Pt 11):1454–62. DOI: http://dx.doi.org/10.1099/jmm.0.010538-0 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19589904

24 

Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: From targets to networks. Nat Rev Microbiol. 2010;8(6):423–35. DOI: http://dx.doi.org/10.1038/nrmicro2333 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/20440275

25 

Bajpai VK, Al-Reza SM, Choi UK, Lee JH, Kang SC. Chemical composition, antibacterial and antioxidant activities of leaf essential oil and extracts of Metasequioa glyptostroboides Miki ex Hu. Food Chem Toxicol. 2009;47(8):1876–83. DOI: http://dx.doi.org/10.1016/j.fct.2009.04.043 PubMed: http://www.ncbi.nlm.nih.gov/pubmed/19426779

26 

Gao C, Tian C, Lu Y, Xu J, Luo J, Guo X. Essential oil composition and antimicrobial activity of Sphallerocarpus gracilis seeds against selected food-related bacteria. Food Control. 2011;22(3-4):517–22. DOI: http://dx.doi.org/10.1016/j.foodcont.2010.09.038

27 

Paul S, Dubey RC, Maheswari DK, Kang SC. Trachyspermum ammi (L.) fruit essential oil influencing on membrane permeability and surface characteristics in inhibiting food-borne pathogens. Food Control. 2011;22(5):725–31. DOI: http://dx.doi.org/10.1016/j.foodcont.2010.11.003

28 

Sharma A, Bajpai VK, Baek KH. Determination of antibacterial mode of action of Allium sativum essential oil against foodborne pathogens using membrane permeability and surface characteristic parameters. J Food Saf. 2013;33(2):197–208. DOI: http://dx.doi.org/10.1111/jfs.12040

[hrvatski]

Posjeta: 55 *